The Milgram non-operad
Annales de l'Institut Fourier, Volume 49 (1999) no. 5, pp. 1427-1438.

C. Berger claimed to have constructed an E n -operad-structure on the permutohedras, whose associated monad is exactly the Milgram model for the free loop spaces. In this paper I will show that this statement is not correct.

C. Berger affirme avoir construit une structure de E n -opérade sur les permutoèdres de Milgram, dont la monade associée est exactement le modèle de Milgram pour les espaces libres de lacets itérés. Dans ce travail je montre que cet énoncé n’est pas correct.

@article{AIF_1999__49_5_1427_0,
     author = {Brinkmeier, Michael},
     title = {The {Milgram} non-operad},
     journal = {Annales de l'Institut Fourier},
     pages = {1427--1438},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {49},
     number = {5},
     year = {1999},
     doi = {10.5802/aif.1724},
     zbl = {0928.55009},
     mrnumber = {2001k:55029},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1724/}
}
TY  - JOUR
TI  - The Milgram non-operad
JO  - Annales de l'Institut Fourier
PY  - 1999
DA  - 1999///
SP  - 1427
EP  - 1438
VL  - 49
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1724/
UR  - https://zbmath.org/?q=an%3A0928.55009
UR  - https://www.ams.org/mathscinet-getitem?mr=2001k:55029
UR  - https://doi.org/10.5802/aif.1724
DO  - 10.5802/aif.1724
LA  - en
ID  - AIF_1999__49_5_1427_0
ER  - 
%0 Journal Article
%T The Milgram non-operad
%J Annales de l'Institut Fourier
%D 1999
%P 1427-1438
%V 49
%N 5
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.1724
%R 10.5802/aif.1724
%G en
%F AIF_1999__49_5_1427_0
Brinkmeier, Michael. The Milgram non-operad. Annales de l'Institut Fourier, Volume 49 (1999) no. 5, pp. 1427-1438. doi : 10.5802/aif.1724. https://aif.centre-mersenne.org/articles/10.5802/aif.1724/

[1] C. Balteanu, Z. Fiedorowicz, R. Schwänzl, R. Vogt, Iterated monoidal categories, preprint 98-035, Universität Bielefeld, 1998. | MR: 1982884 | Zbl: 1030.18006

[2] H.-J. Baues, Geometry of loop spaces and the cobar-construction, Mem. Amer. Math. Soc., 230 (1980). | MR: 81m:55010 | Zbl: 0473.55009

[3] C. Berger, Opérades cellulaires et espaces de lacets itérés, Ann. Inst. Fourier, 46 (1996), 1125-1157. | EuDML: 75202 | Numdam | MR: 98c:55011 | Zbl: 0853.55007

[4] C. Berger, Combinatorial models for real configuration spaces and en-operads, Cont. Math., 202 (1997), 37-52. | MR: 98j:18014 | Zbl: 0860.18001

[5] J.M. Boardman, R.M. Vogt, Homotopy-everything h-spaces, Bull. Amer. Math. Soc., 74 (1968), 1117-1122. | MR: 38 #5215 | Zbl: 0165.26204

[6] J.M. Boardman, R.M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math. 347 (Springer, Berlin), 1973. | MR: 54 #8623a | Zbl: 0285.55012

[7] Y. Hemmi, Higher homotopy commutativity of H-spaces and the mod p torus theorem, Pac. J. Math., 149 (1991), 95-111. | MR: 92a:55010 | Zbl: 0691.55007

[8] J.P. May, The geometry of iterated loop spaces, Lecture Notes in Math. 271 (Springer, Berlin), 1972. | MR: 54 #8623b | Zbl: 0244.55009

[9] C.A. Mcgibbon, Higher forms of homotopy commutativity and finite loop spaces, Math. Zeitschrift, 201 (1989), 363-374. | EuDML: 174058 | MR: 90f:55019 | Zbl: 0682.55006

[10] R.J. Milgram, Iterated loop spaces, Ann. of Math., 84 (1966), 386-403. | MR: 34 #6767 | Zbl: 0145.19901

[11] J.D. Stasheff, Homotopy associativity of h-spaces, I, Trans. Amer. Math. Soc., 108 (1963), 275-292. | MR: 28 #1623 | Zbl: 0114.39402

[12] F.D. Williams, Higher homotopy-commutativity, Trans. Amer. Math. Soc., 139 (1969), 191-206. | MR: 39 #2163 | Zbl: 0185.27103

Cited by Sources: