We propose a definition of Leibniz cohomology, , for differentiable manifolds. Then becomes a non-commutative version of Gelfand-Fuks cohomology. The calculations of reduce to those of formal vector fields, and can be identified with certain invariants of foliations.
On propose une définition de la cohomologie de Leibniz, , pour les variétés différentiables. Alors devient une version non-commutative de la cohomologie de Gelfand-Fuks. Les calculs de se réduisent à ceux des champs de vecteurs formels, et peuvent être identifiés avec des invariants de feuilletages.
@article{AIF_1998__48_1_73_0, author = {Lodder, Jerry M.}, title = {Leibniz cohomology for differentiable manifolds}, journal = {Annales de l'Institut Fourier}, pages = {73--95}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {1}, year = {1998}, doi = {10.5802/aif.1611}, zbl = {0912.17001}, mrnumber = {99b:17003}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1611/} }
TY - JOUR AU - Lodder, Jerry M. TI - Leibniz cohomology for differentiable manifolds JO - Annales de l'Institut Fourier PY - 1998 SP - 73 EP - 95 VL - 48 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1611/ DO - 10.5802/aif.1611 LA - en ID - AIF_1998__48_1_73_0 ER -
%0 Journal Article %A Lodder, Jerry M. %T Leibniz cohomology for differentiable manifolds %J Annales de l'Institut Fourier %D 1998 %P 73-95 %V 48 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1611/ %R 10.5802/aif.1611 %G en %F AIF_1998__48_1_73_0
Lodder, Jerry M. Leibniz cohomology for differentiable manifolds. Annales de l'Institut Fourier, Volume 48 (1998) no. 1, pp. 73-95. doi : 10.5802/aif.1611. https://aif.centre-mersenne.org/articles/10.5802/aif.1611/
[B] Lectures on Characteristic Classes and Foliations, Lecture Notes in Mathematics, 279 (1972), 1-94. | MR | Zbl
,[BS] The Cohomology of the Vector Fields on a Manifold, Topology, 16 (1977), 285-298. | MR | Zbl
, ,[CE] Cohomology Theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124. | MR | Zbl
, ,[C] Géométrie Non Commutative, Inter Editions, Paris, 1990. | Zbl
,[F] Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, 1986 (A.B. Sosinskii translator). | MR | Zbl
,[GK] Koszul Duality for Operads, Duke Jour. Math., 76-1 (1994), 203-272. | MR | Zbl
, ,[Gb] Cohomologies d'algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki, 421 (1972). | Numdam | Zbl
,[Gw] Relative Algebraic K-Theory and Cyclic Homology, Annals of Math., 124 (1986), 347-402. | MR | Zbl
,[H] Sur les classes caractéristiques des feuilletages, Séminaire Bourbaki, 412 (1972). | Numdam | Zbl
,[HS] Cohomology of Lie Algebras, Ann. of Math., 57 (1953), 591-603. | MR | Zbl
,[K] Vertex Algebras for Beginners, Am. Math. Soc., Univ. Lecture Series, 10 (1996). | Zbl
,[K-S] From Poisson Algebras to Gerstenhaber Algebra, Ann. Inst. Fourier, Grenoble, 46-5 (1996), 1243-1274. | Numdam | MR | Zbl
,[L1] Cyclic Homology, Grund. Math. Wissen. 301, Springer Verlag, 1992. | MR | Zbl
,[L2] Une version non commutative des algèbres de Lie: les algèbres de Leibniz, L'Enseignement Math., 39 (1993), 269-293. | MR | Zbl
,[L3] Cup product for Leibniz cohomology and dual Leibniz algebras, Math. Scand., 77-2 (1995), 189-196. | MR | Zbl
,[L4] La Renaissance des Opérades, Séminaire Bourbaki, 792 (1994-1995). | Numdam | Zbl
,[LP] Universal Enveloping Algebras of Leibniz Algebras and (Co)-homology, Math. Annalen, 296 (1993), 139-158. | MR | Zbl
, ,[P] On Leibniz Homology, Ann. Inst. Fourier, Grenoble, 44-2 (1994), 401-411. | Numdam | MR | Zbl
,[S] A Comprehensive Introduction to Differential Geometry, Vol. I, Publish or Perish, Inc. (1979). | Zbl
,[W] The Classical Groups, Princeton University Press, 1946.
,Cited by Sources: