We describe the branching rule from to , where the latter is embedded via its action on binary cubic forms. We obtain both a numerical multiplicity formula, as well as a minimal system of generators for the geometric realization of the rule.
On donne une description de la restriction des modules de à , où est considéré comme sous-groupe par l’action sur les formes binaires cubiques. On obtient une formule numérique pour les multiplicités, et un ensemble minimal de générateurs pour la réalisation géométrique naturelle de cette formule.
@article{AIF_1998__48_1_29_0, author = {Papageorgiou, Yannis Y.}, title = {$SL_2$, the cubic and the quartic}, journal = {Annales de l'Institut Fourier}, pages = {29--71}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {1}, year = {1998}, doi = {10.5802/aif.1610}, zbl = {0901.20030}, mrnumber = {99f:20071}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1610/} }
TY - JOUR AU - Papageorgiou, Yannis Y. TI - $SL_2$, the cubic and the quartic JO - Annales de l'Institut Fourier PY - 1998 SP - 29 EP - 71 VL - 48 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1610/ DO - 10.5802/aif.1610 LA - en ID - AIF_1998__48_1_29_0 ER -
%0 Journal Article %A Papageorgiou, Yannis Y. %T $SL_2$, the cubic and the quartic %J Annales de l'Institut Fourier %D 1998 %P 29-71 %V 48 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1610/ %R 10.5802/aif.1610 %G en %F AIF_1998__48_1_29_0
Papageorgiou, Yannis Y. $SL_2$, the cubic and the quartic. Annales de l'Institut Fourier, Volume 48 (1998) no. 1, pp. 29-71. doi : 10.5802/aif.1610. https://aif.centre-mersenne.org/articles/10.5802/aif.1610/
[Br] Représentations exceptionnelles des groupes semi-simples, Ann. Scient. Éc. Norm. Sup., 4e série, 18 (1985), 345-387. | Numdam | MR | Zbl
,[G] Die simultanen Systeme binärer Formen, Math. Ann., 2 (1870), 227-280. | JFM
,[GI] Vorlesungen über Invarianten Theorie, reprinted by Chelsea Publishing Co., New York, 1987.
,[Gu] Zur Theorie des simultanen Systems einer cubischen und einer biquadratischen binären Form, J.B. Metzler, Stuttgart, 1869. | JFM
,[H-Per] Perspectives on invariant theory: Schur duality, multiplicity-free actions, and beyond, Isr. Math. Conf. Proc., 8 (1995), 1-182. | MR | Zbl
,[H-Rem] Remarks on classical invariant theory, Trans. Amer. Math. Soc., 313 (1989), 539-570. | MR | Zbl
,[HU] The Capelli identity, the double commutant theorem and multiplicity-free actions, Math. Ann., 290 (1991), 565-619. | Zbl
and ,[Hum] Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1972. | MR | Zbl
,[KKLV] Algebraic Transformation Groups and Invariant Theory (H. Kraft et al., eds), Birkhäuser Basel Boston Berlin, 1989, 63-76. | Zbl
et .,[KT] Young-Diagrammatic Methods for the Representation Theory of the Classical Groups of type Bn, Cn and Dn, J. Alg., 107 (1987), 466-511. | MR | Zbl
and ,[K] A formula for the Multiplicity of a Weight, Trans. Amer. Math. Soc., 93 (1959), 53-73. | MR | Zbl
,[LP1] A Generalization of the Littlewood-Richardson Rule, J. Alg., 130 (1990), 328-368. | MR | Zbl
,[LP2] A Littlewood-Richardson Rule for Symmetrizable Kac-Moody Algebras, Invent. Math., 116 (1994), 329-346. | MR | Zbl
,[LDE] On Invariants under Restricted Groups, Philos. Trans. Roy. Soc. A, 239 (1944), 387-417. | MR | Zbl
,[M] Bericht über den gegenwärtigen Stand der Invariantentheorie, Jahresbericht der DMV, Band 1 (1892), 79-292. | JFM
,[S] Lessons Introductory to the Higher Modern Algebra, Hodges, Figgis, and Co., 1885.
,[Sch] On classical invariant theory and binary cubics, Ann. Inst. Fourier, 37-3 (1987), 191-216. | Numdam | MR | Zbl
,[Sp] Invariant Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1977. | MR | Zbl
,Cited by Sources: