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LEIBNIZ COHOMOLOGY FOR
DIFFERENTIABLE MANIFOLDS

by Jerry M. LODDER*

Introduction.

The goal of this paper is to extend Jean-Louis Loday's Leibniz coho-
mology [L,P] from a Lie algebra invariant to a new invariant for differen-
tiable manifolds. The extension is achieved by using a cochain complex of
tensors from classical differential geometry, and as such, generalizes the de
Rham complex of differential forms (i.e. alternating tensors). The exterior
derivative of an n-tensor, however, is not necessarily an (n+ l)-tensor, but
more generally an operator on vector fields. The Leibniz cochain complex
thus becomes a non-commutative version of Gelfand-Fuks cohomology for
smooth vector fields. The Leibniz cohomology groups, JfL*(M), are dif-
feomorphism invariants, but fail to be homotopy invariants. In fact the
first obstruction to the homotopy invariance of -H'L*(Rn) is the universal
Godbillon-Vey invariant in dimension 2n+1. The main calculational result
of the paper is then the computation of HL* (R71) in terms of (i) certain uni-
versal invariants of foliations, and (ii) Loday's product structure on H I * .
Unlike Lie algebra or Gelfand-Fuks cohomology, the Leibniz cohomology
of vector fields on R71 contains infinite families of elements which support
non-trivial products.

* Supported by the National Science Foundation, grant no. DMS-9704891.
Key words'. Leibniz cohomology - Foliations - Differentiable manifolds - Gelfand-Puks
cohomology.
Math. classification: 17A30 - 57R30 - 57R32.
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The paper begins with a brief review of Loday's definition of HL*^
and proceeds with a conceptual discussion of HL* for differentiable mani-
folds. The calculational results for JIL^R77') appear in §2 along with the
necessary background material on foliations needed to state these results.
Finally §3 concludes with a conjectural characteristic map in the setting of
Leibniz cohomology.

1. Non-commutative cohomologies.

We begin by reviewing Loday's definition of Leibniz (co)homology
[LI], [L2], [L,P]. Let k be a commutative ring and Q a A:-module together
with a bilinear map [,] : Q x Q —>• Q. Then, by definition, Q is a Leibniz
algebra if the bracket satisfies the "Leibniz identity"

(1.1) [x^[y^}}=[[x^z}-[[x^]^}

for all x ^ y ^ z in fl. If in addition to (1.1), the bracket is skew-symmetric,
[x^y] = —[^,rc], then (1.1) is equivalent to the Jacobi identity, and Q itself
becomes a Lie algebra. In this sense, a Leibniz algebra is a non-commutative
version of a Lie algebra. We also need the notion of a representation of a
Leibniz algebra [L,P], which is a A-module N equipped with left and right
actions of Q

[ , ] : 5 x TV -. TV, [ , ] : TV x 0 ̂  TV

which are bilinear and satisfy the three properties

[m, [x, y}} = [[m, x], y] - [[m, z/], x}

(1.2) [^[^,2/]] = [[a^],2/] - [[^2/],^]
[:r,b/,m]] = [[a;,?/],m] - [[a:,m],2/]

for all x ^ y € Q and m € N. Of course, if AT is a representation of a
Lie algebra 9, then the above three conditions are equivalent, since a
left representation of a Lie algebra, [ , ] : Q x N —> N determines a
right representation of the same Lie algebra [ , ] : N x Q —> N via
[a;,m] = —[m,a;].

Returning to the setting of a Leibniz algebra Q and a representation
TV, the Leibniz cohomology of Q with coefficients in TV, written HL*(Q\ AT),
is the homology of the cochain complex

(^(0; N) = Hom^s071, N), n ̂  0.
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To streamline the notation for the coboundary map

d:Cn(Q^N)^Cn^^N)

let (gi,g2^",9n) denote the element g\ 0 g^ 0 • • • (g) gn € fl071. For
/ € G^AO, we have

W)(^1^2,.-.^n+l)

= ^ (-l)-^1/^ • • • ^-1^ b^j]^+l^ • • ̂  • • • ^n+l)
(1.3) l<z<j<n+l

n+1

+ bl. /(^2, . . . ̂ n+l)] + ̂ (-1)'[/(^1, . . . ,9i, . . . ̂ n+l),^l].
i=2

Loday and Pirashvili [LP] prove that dod = 0 in (1.3), thus establishing that
<7*(0;7V) is a cochain complex. For a Lie algebra \} and a representation
TV, the projection to the exterior product ̂ n —> l)^ induces a natural
homomorphism

H^N)^HL^^N)^

where H^ is Lie-algebra cohomology.

We wish to extend Leibniz cohomology to an invariant for differen-
tiable manifolds so that in a certain sense HL* is a non-commutative ver-
sion of de Rham cohomology. In particular the non-commutativity arises
by considering a cochain complex of tensors (from differential geometry)
which are not necessarily skew-symmetric. Let M be a differentiable ma-
nifold and a an n-tensor on M. Then, by definition, a is a differentiable
section

a:M-.(T*M)^,

where T*M is the cotangent bundle of M. To define the de Rham cohomo-
logy groups, .Hp^(M), however, one uses forms uj € ^(M), where a; is a
differentiable section of the n-th exterior power of T*M,

c^M^^M)^.

Any tensor a determines a form uj^ by first symmetrizing over the symme-
tric group Syi, i.e.

^a(Vt A V2 A • • • A Vn) = ̂  (sgU a)a(^(i) 0 V^) (g) • - • (g) Va{n))'

o-eSn
This is the step which yields a graded commutative ring structure on

^*(M)=^^(M).
n>0
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Recall E. Cartan's global formulation for the exterior derivative of
a differential form in terms of vector fields (see Spivak [S], p. 289 for a
modern treatment). Let Xi, X^,... ,Xn+i be differentiable vector fields on
M and let uj € ^(M). Then there is a unique (n + l)-form duj such that

n+l

(1.4) do;(XiAX2A.. -AX,+i) = ̂ (-^^(XiA. • . X,.. •AX,+i))
1=1

+ ^E (-l^M^l A • • • A X,_i A [X,, X,] A X,+i A • • .
Ki<j<n+l

• • • Xj • • • A X^-i-i),

where [ , ] is the Lie bracket of vector fields and

X^(XiA...X,.. .AX,+i))

is the directional derivative of the function

o;(Xi A • • • X, • • • A X^+i)) : M -^ R.

Although (kj is defined on vector fields in (1.4), the value of the exterior
derivative

^(Xi(p)AX209)A...AX,+i(p))

depends only on one point p e M, since duj is linear over C°° functions
on M. Thus, duj determines a well-defined (n + l)-form. See Spivak [S],
pp. 162, 289, for more details. The following lemma is immediate.

1.5. LEMMA. — If in (1-4) uj is an n-tensor and the exterior product
A is replaced with the tensor product 0, then (d o d){uj) == 0.

Proof. — Let \{M) be the vector space of all differentiable vector
fields on M. Then \(M) is a Lie algebra under the Lie bracket of vector
fields, and, hence a Leibniz algebra. Let C°°(M) be the vector space of C°°
functions / : M —^ R. Clearly C°°(M) is a representation of \(M) by

[XJ}=X(f\

where X(f) is the Lie derivative of / in the direction X. Setting [f,X] =
—[X,/], we see that C°°(M) becomes a representation of the Leibniz
algebra \{M). The lemma follows since d o d = 0 in (1.3). D

It must be noted, however, that when using tensors, duj is no
longer linear over C°° functions. The obstruction to C°° (M)-linearity is
precisely the failure of a tensor to be skew-symmetric. This is the essential
distinction between the commutative and non-commutative cases. As a
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consequence duj is not necessarily an (n -}- l)-tensor, but more generally an
R-linear mapping

dw : ̂ (M)0^4-1) -^ C°°(M).

We propose the following definition.

1.6. DEFINITION. — The Leibniz cohomology of a differentiable
manifold M, written

^L*(x(M);C°°(M)),

is the homology of the complex of continuous cochains
Horn^^M^C^M))^ ^ 0,

in the C00 topology, where \(M) is the Lie algebra of differentiable vector
fields on M, and C°°(M) denotes the ring of C°° real-valued functions on
M. The coboundary map d is given in (1.3).

Several observations are in order.

1.7. — The continuous Lie-algebra cohomology of x(M) is called
Gelfand-Fuks cohomology, -^^(^(M);]^,), and is essentially the subject
of the book Cohomology of Infinite Dimensional Lie Algebras [F].

1.8. — There is a commutative diagram
HDRW ^-. ^0<(M);C°°(M))

-Tro^ ^/ TT

^^(M^C^M))
which arises from the fact that H^j^(M) is the homology of the cochain
complex

Homg)^(x(M)A^C'oo(M)),n ̂  0,

with boundary map given by (1.4). In fact there is a natural inclusion of
cochain complexes

n"(M) ̂  Hom^M^W^C'̂ M))
given by

uj i-> o;(Xi A X2 A • • • A Xn) : M —^ R

o;(Xi A X2 A . • • A Xn){p) = ̂ (Xi(p) A X^p) A . • • A X,(p)).

The map i : H^(M) -^ H^xW^C00^)) is then induced by the
inclusion

Hom^t(M)(x(M)An,GOO(M)) - Hom^O^^C^M)).
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See [F], p. 21 for further details. The map

TT : ̂ (x(M);G°°(M)) - ̂ L*(x(M);G°°(M))

is induced by the projection ^(M)071 —> ^(M)^.

1.9. — If M = G is a Lie group, then x(G)°, the left-invariant vec-
tor fields on G form the Lie algebra Q of G. For invariant functions on G,
we have C^G^ = R. Thus,

T{Q)=^^n

n>_0

is a subcomplex of
{G-(G)0x(G)^}^.

In fact T(o) is the original complex proposed by Loday [LI], p. 324 for the
Leibniz homology of a Lie algebra. Of course, for G compact and connected,
there is the Chevalley-Eilenberg [C,E] isomorphism

J%,(S;R)^^(G;R).

Such an isomorphism appears not to hold in the setting of Leibniz coho-
mology however.

1.10. LEMMA. — Leibniz cohomology is a diffeomorphism invariant,
i.e. i f f ' . M — ^ N i s a diffeomorphism, then there is an induced isomorphism

f- : ̂ L*(x(AO;G°°(AO) ̂  ̂ (^(M^C^M)).

Proof. — Note that if X is a C00 vector field on M, then f^{X) is a
C°° vector field on TV, where

(A(X)),=/.(X^-I(,)) for q e N .

See Spivak [S], p. 186. To define

/» : Hom^AO071^00^)) -^ HomRO^M^.C^M)),

let (3 € HomR^AO0^ C'°°(^)), and X, e x(^), z = 1,2,... ,n. Then

/tt (/3) (Xi 0 X2 0 • • • ^) X^) : M ̂  R

is given by

^(/?)(Xi 0 ... 0 X,)(p) = /3(/*(Xi) 0 ... 0 A(X,))(/(p)).

Of course for n = 0, HomJJR, (^^(^V)) = (^(AO, and for /3 € C°°(^v),

(^(/3))(P) =/?(/(?))•
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Two properties are needed to show that f^ is a cochain map. First,
A([Xi,X2])=[/*(Xi),A(X2)].

To state the second, recall that C'°°(M) is a left representation of the Lie
algebra \(M) via

[x^] = x^)^e C°°(M), x e x(M).
For 7 6 COO(N), the composition 7 0 / 0 (7°°(M), and the second needed
property is

[X,7o/]=[A(X),7]o/.

This is simply "the chain rule."

Since both compositions (/-1)* o /* and /* o (/-1)* are the identity,
it follows that

/* : ̂ L*(x(AO;C°°(7v)) -. ̂ L*(x(M);C°°(M))
is an isomorphism. Clearly if using trivial coefficients, then

/* : ̂ L*(x(AO;R) - ̂ L*(^(M);R)
is also an isomorphism. D

1.11. — We wish now to compare, at least philosophically, Leibniz
cohomology with cyclic homology, both of which serve as certain non-
commutative versions of de Rham cohomology. For cyclic homology, what
has been generalized to a non-commutative setting is the coefficient ring,
i.e. C'°°(M) is replaced with a non-commutative algebra. For Leibniz co-
homology the differential operator (exterior derivative) has been cast in
a non-commutative framework. That these are in fact genuinely different
generalizations can be seen from the calculation of HP^(C°°{M)\ the
periodic cyclic homology of C°°(M). We have [C]

HP^C°°(M))^H^{M)
for M cr-compact.

The notions of non-commutativity can be summarized in the following
diagram, where the column headings describe the coefficients, and the row
headings describe the operators.________________________

COMMUTATIVE NON-COMMUTATIVE

COMMUTATIVE de Rham cyclic homology
(singular cohomology) (K-theory)

NON- Leibniz cohomology Leibniz cohomology
COMMUTATIVE of Lie algebras of Leibniz algebras

(foliations) (quantum field theory)
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The parenthetical remarks refer to the type of invariants which can
be computed by each theory. For the relation between cyclic homology
and K-theory, see for example Goodwillie's paper [Gw]. In this paper we
capture the Godbillon-Vey invariant for foliations via a Leibniz cohomology
computation of a certain Lie algebra. In the next remark we observe how
a Leibniz algebra arises naturally in V. Kac's work [K] on vertex operator
algebras. The Leibniz cohomology groups of this algebra would then provide
new invariants of quantum field theory.

1.12. — We now review a construction of Kac [K] concerning vertex
algebras, and show that a Lie algebra occuring in [K]—formed by a certain
quotient—is genuinely a Leibniz (non-Lie) algebra if the quotient is not
formed. Let U be an associative, but not necessarily commutative algebra,
such as End(Y) for a vector space V. Let a(z) be a formal power series in
z and z~1 with coefficients in [/, i.e. a{z) is a formal distribution. For

a(^),^)c^[M-1]],

the 0-th order product, a(z)^b{z), is defined as

a(z)^b(z) = Res^ (a{z)b(w) - b(w)a(z)),

where for c(z) = ̂  c^, we set Res^(c(^)) = c-i. Then
fcez

a(z)(o)6(>) = ^(a-i&fc -^a-i)^ € [/[[^-1]].
feez

By the work of Kac, the quotient A/9A is a Lie algebra with respect to the
0-th order product, where A = U[[z, z~1}}. Setting [a(z), b(z)} = a(z)^b(z),
we see that this bracket is not skew-symmetric on A, but satisfies what
Loday and Pirashvili [LP] call the left Leibniz identity:

(1.13) [[a(z^b(z)},c(z)} = [a(^), [b{z\c{z)}\ - [b{z\ [a(z)^c(z)}}.

Thus, ^[[^^-1]] is a left Leibniz algebra. There is a one-to-one correspon-
dence between left Leibniz algebras (fl, [ , ]i/) for which the bracket satisfies
(1.13) and right Leibniz algebras (g, [ , ]^) for which the bracket satisfies
(1.1). The correspondence is simply given by

S ^—^ S [y, X\L <—> [x, y\R.
Also, if V is a Z/2-graded vector space (i.e. a super-space), and U =
End(V), then there are corresponding statements for Z/2-graded Lie
algebras and Z/2-graded Leibniz algebras. A different Leibniz algebra in
the setting of vertex algebras has been found by Kosmann-Schwarzbach [K-
S] by using the residue of a dot product of a(z) and b{z) after multiplication
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by z~1. This differs from our example where we use the residue of a
commutator of a(z) and b(z) (after multiplication by z° = 1).

2. Leibniz cohomology of formal vector fields.

In this section we begin the calculation ofUL'^^R71); R), the Leibniz
cohomology of R71 with trivial coefficients. These groups are isomorphic to
the continuous Leibniz cohomology of formal vector fields Wm which we
now describe. Let E be the real vector space with basis

( 9 _9_ 9 ->
\Qx\' 9x(z' '9xn )

and let E' = HomR,(£',R) be the dual space with dual basis {.TI, ^2 , . . . ̂ n}.
Then [F],[Gb]

Wn=(]^Sk(Ef))^E^
k>0

where 5^ denotes the ^-symmetric power, and Wn becomes a Lie algebra
with the bracket given by

fV"p Q V"n 9 1 -V^V"?9^ o apk} 9
[^^^^j -^(^^^-^^J^

where Pi and Qz are formal power series in a;i, ̂ 2 , . . . ̂ n. Furthermore Wn
is a topological space in the A^-adic topology, where

llr^ll — ^-fe ? — 1 9 r)\\x^\\~c , % — 1, ̂ , . . . ,7(',

for some fixed integer c > 1. By HL*(Wn) we mean the continuous Leibniz
cohomology with coefficients in R. We now define a Taylor series map
(f): ^(R71) ̂  Wn. For X e x(R"), let X = f^ /,e,, where the /, : R71 -. R

1=1
are C00 functions and the e^ are the canonical vector fields on R71 (the unit
vector fields following the coordinate axes). Then

^)-EE • r , 1 • ^ y ^ w ^ ' ' ' ^ - ^ .—'—' 3\W'"3^ Qx'7 v / 1 2 Qxii— i j
where J is the multi-index ^1,^25 • • • Jn >. 0- It can be checked that 0 is a
continuous homomorphism of Lie algebras.

2.1. LEMMA. — The induced map ̂  : HL"(Wn) -^ ^L^R^R)
is an isomorphism.
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Proof. — The proof follows essentially from the work of Bott and
Segal [BS] who prove that for continuous Lie algebra cohomology

0* : H^(Wn) - HG^X^W

is an isomorphism. We do not offer complete details of their proof here, but
instead state how a few ideas are extended from Lie cochains to Leibniz
cochains. Let

X = X(R"), C" = Horn^-W, R),

and define Pq to be the subspace of ^0g spanned by R-linear combinations
of

fi^ 0/^6^ 0-"0A,e^,

where each fi. is a polynomial and

^deg(f^)<q.
j=i

Let Gj> = HomR^P^R). Then d : C^ -> C^\ and we have a short
exact sequence

0 —. B* —> C* —> Cp —> 0,

where B* is defined by C"p = (7*/B*. As in the case for Lie algebra
cohomology [BS], we show that B* is acyclic, thus proving that (7* —^ (7jE>
induces an isomorphism on HL*.

Let Tf : R71 —> R71 be the contraction defined by Tt{x) = tx,
0 < t < 1. Then Tt acts on C9 by

(T,a)(Xi (8) • . . 0XJ = ̂ a(r;(Xi) 0 ... (g)T;(X,)),

where a e G9 and Xi e ^. Since the one-parameter family of diffeomor-
phisms Tf is generated by a vector field p on R71, we have

Tt-l'tWdt)Tt=e(p):C^C\

where for the Leibniz cochain complex

(9(p)(a)(Xi <g) X2 0 • • • 0 Xg)
q

== - ̂  a(Xi 0 • . • 0 X,-i 0 [X,, /?] 0 X,+i 0 • • • 0 Xg).
2=1

From the work of Loday and Pirashvili [LP]

0(p)=z(p)d+dz(p),
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where i{p) : C'9"1"1 —> Cq is given by

%(p)a(Xi (g). . • 0 Xq) = (-l)^1^! (g) ̂ 2 0 • • • 0 X^ 0 p).

It now follows as in [BS] that for a € -B*,

a = Kda + dXa,

where
/>1

K{a)=i{p) \ t^TtWdt.
Jo

Thus K is a contracting chain homotopy for B* regardless of whether a is
skew-symmetric. D

We now turn to the calculation of HL*(Wn) in terms of certain
universal properties of foliations. Let ,? be a codimension n, C°° foliation
on a manifold M with trivial normal bundle. Then there is a characteristic
map associated to S [B] [F] [H]

(2.2) char^ : H^(Wn) -^ H^(M).

If St is a smooth one-parameter family of such foliations, then one can
compute the derivative

^[char^(a)|^oe^^(M;R).

The class a C H^(Wn) is called variable if there exists a family ̂  for
which

^[char^(a)|(=o^0-

Otherwise, a is called rigid. From Fuks [F] a necessary condition for the
variability of a is that var(a) -^ 0, where var is the homomorphism

(2.3) var : H^(Wn) -. H^^W^ <)

given on the cochain level by

var(a)(pi,^2,... ,9q-i){9o) = (-l)9"1^^^!,^,. • . ̂ 9-1).
Here and further H*(Wn''> W^) denotes the continuous Lie algebra cohomo-
logy with coefficients in the co-adjoint representation

W^Hom^^.R).

Our calculation of HL^(Wn) is in terms of the homomorphism var and the
product structure on Leibniz cohomology.

Recall that for a Leibniz algebra 5, Loday [L3] has defined a non-
commutative, non-associative product on HL*(o) which affords HL*(o)
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the structure of a dual Leibniz algebra, where dual is taken in the sense of
Koszul duality for operads [G,K], [L4]. More specifically, let

^ = Hom(fl^, R), a € C^, (3 € G9,

and define a ' (3 e C^9 by

(2.4) (a • /?) (pi 0 ̂ 2 0 • • • 0 %>+<?) = ^ sgn(a)a(^i 0 ̂ 2) 0 • • •
(7eS7ip_i,g

• • • ̂  ̂ a(p)) • /^<r(p+l) ̂  • • • ̂  ̂ r(p+g)),

where the sum is over all (p- 1, g)-shuffies of the symmetric group Sp+^-i,
i.e.

a(2)<a(3)<—<a(p),

a(j? + 1) < a(p + 2) < • . . < a(p + 9).

Then from [L3] d{a • (3) = {da) • (3 + (-l)Ha • (d/3), and for x C HLP(Q),
y € ^^(s), ^ e ̂ 27 (s), we have

(.r . y) ' z = a; • (y . ̂ ) + (-1)^ • (z . ̂ /).

In the sequel we will need the following formula for products of homoge-
neous elements in HL* (o)

(2.5) {ao-(ar(a2 • • - (ap-i-Op) • • •))}-{ap+r(ap+2-(- • • (ap+g-rOp+g) • •.))}

= ^ ±ao • (ao--i(i) • (aa-i(2) • (• • • (a^-i(^_i) • a^-i(p+^)) • •.))).
o-G67ip,q

Note that we are using a~1 in the above formula. Related to this formula
is Loday's observation [L3] that for a vector space V, the reduced tensor
module

T(V)=^V0k

k>l

carries the structure of a free dual Leibniz algebra for which

(2.6) (^o^i,...,^) • (2;p+i,...,2;p+g)

= ^ (^O^-l^^a-^——^-^p+g))
cr^Shp,q

for homogeneous elements Vi. Signs can be used in (2.6) if T(V) is given a
grading.

An essential technique for the calculation of HL* (5) in the special case
of a Lie algebra is the Pirashvili spectral sequence [P] which uses %e(fl)
and H^Q',^) to glean information about ^L*(s). In [P], Pirashvili
provides the details for Leibniz homology. Here we outline the construction
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for cohomology and show that Loday's product is defined on the filtration
which yields the cohomology spectral sequence. To begin, let 5 be a Lie
algebra and define ^(s) to be the real vector space of skew-symmetric
(alternating) homomorphisms ^n —^ R. If 5 has a topology, then all
morphisms are taken to be continuous. For a € ^(fl), rb ls evident that

<^(^ • . • ̂  • • • ̂  • • • ̂ n) = -Oi(gi, . . . ,^-, . . . ,̂ , • . . ,^n),

and ^*(fl) is the cochain complex for H^(o). We have a short exact
sequence

0 —— Q*(fl) —. C*(s) —— C*(fl)/Q*(s) — 0,

where ^(s) = HomR^.R). Clearly ^°(fl) = G°(fl) and ^(s) =
(71(fl). Following Pirashvili's grading, set

%l[2]-C*(fl)/n*(fl).

We then have a long exact sequence

(2.7) ... -^ H^(e) —^ ^"(fl) -^ H^(g) -^ H^\Q) -^ . • •

Define a left representation of Q on Q' = HomR.(fl, R) by

(<n)W=^([M)
where ^, h € Q and 705' . Let ^(fl; 0') denote the vector space of skew-
symmetric homomorphisms a : 5(g)n —^ fl'. Thus, fr(fl;5') is the cochain
complex for H^^Q'). There are inclusions of cochain complexes

zi : n"̂ ) - ̂ (gssQ, ^ 2 : ""M) - c^^a)
given by

(^1 (00(^1^2, • • • ^n))(^o) = (-^0^(90,91,92, . . . ,9n)

(W)(9^9l, • • . ̂ n) = (-1)^(^1, . . • ^n)(<7o).

Note that ^1 has occured as var in (2.3), and 22 allows us to consider an
element of ^(5; 5') as an element of C'71"^1^) which is alternating on the
last n tensor factors of ^j^77^1). In [F] JFfj^fl; Q') is given the structure of a
right module over H^(o), which is induced by a map of cochain complexes

•^W)^9^)^^^').
For a € ^(fl;^) and f3 C ^(0),

(a»/3)(^i,^2,.. .^p+g)(^o)

= ^ sgn(cr) ̂ (^(i),... ,^(p))(^o)) (^(^(p+i), • • • ^<r(p+g))) •
o-e6'/ip,g
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Then d{a • ft) = (da) • /? + (-1)^0 • d/?, and

Z2(a»/3)=(z2(a)) - /3,

where the small dot, •, is the product denned in (2.4).

The short exact sequence

0 —— Q*(fl) — ^*-W) —— CR^Q)[I] —— 0,

for which CR*(o)[l] = ^*-l(s;S/)/^*(0), yields the long exact sequence

(2.8) ... ̂ H^(Q) ̂ ^(fl; 0') -.^^(fl)^^1^)^....

Consider now the decreasing nitration of C^ given by F^ = (7^, and for
s > 1, F^ = {/ € C'*(s) | / is alternating in the last (s + l)-many tensor
factors /^"(fl).

2.9. LEMMA. — If/ : g^-^) -> R is alternating in the last s-many
factors, then

df : ̂ (n+l+s) ̂  R

is alternating in the last s-many factors.

Proof. — This can be checked by hand. Compare with [P]. D

2.10. THEOREM. — There is a spectral sequence converging to
H^(Q) with

E^^H^^^HR8^)

provided that HL*(o) and HR*(Q) are finite dimensional vector spaces in
each dimension. The completed tensor product can be used if this finiteness
condition is not satisfied.

Proof. — Let 0 denote the completed tensor product. Then
(F^F^^A/B
A = C^s)^/ € C^2^) | / is alternating in last (s+1) tensor factors}
B = C^s)^^2^).

Thus, E8^ ^ C^s^CW^), and E^ ^ H^^CR8^). Since the
co-adjoint action of Q on HL*(o) is trivial [LI, 10.1.7], we conclude that

E^^H^^HR8^).
If HL*(o) and HR*(o) are finitely generated in each dimension, then

E^^H^^^HR8^). D
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2.11. THEOREM. — If a : ^p -» R and (3 : Q^ -^ R are
alternating in the last s factors, where s <: p and s < q, then a - (3 :
^®(p+<?) -^ R is alternating in the last s factors, i.e. F8-1 • F8-1 c F8-1.

Proof. — It suffices to show that for p + q — s < i < p 4- g, we have

(^ • /3)(^1, • • • ,9i,9i+l, . . . ̂ p+g) = -(Oi • /3)(^l, . . . ,^+1,^, . . . ,^p+g).

Let cr be a (p - 1, g)-shuffle of {2,3 , . . . ,p + q}. There are four possibilities
to consider.

(i) Suppose that both i and i + 1 appear in the sequence

(7(p+l) ,a(p+2), . . . ,<r(p+g).

Since there are at most p 4- q — (i + l)-many possible choices for j so that
^ + 1 < crQ'), the integers i and i + 1 must appear among the last s-many
terms of the increasing sequence

(7(p+l),c7(p+2),...,a(p+g).

(ii) Suppose that i appears in the sequence

a(2),a(3),...,a(p)

and i + 1 appears in the sequence

a(p+l),a(p+2), . . . ,a(p+g).

Let a(x) = i and a(y) = i + 1. Then a denned by

(<7), J ^ x J ^ y
a{j) = a(x), j = y

^(y). 3 = x,
is a (p - 1,9)-shume of {2 ,3 , . . . ,p + q} having the opposite sign of a.

(iii) If i appears in the sequence

a(p+l),a(p+2),...,a(p+g),

and i + 1 appears in the sequence a(2),cr(3),... ,cr(p), then proceed as in
(ii).

(iv) If both i and %4-1 appear in the sequence cr(2), cr(3),... ,cr(p), then
argue as in (i). n

It may well be that certain terms in the sum for a - (3 lie in
filtration degree greater than 5, which is useful in the computation of higher
differentials for the Pirashvili spectral sequence.
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For the reader's convenience we record the results of the calculation
of H^(Wn) [B] [F] [Gb]. First observe that there is a monomorphism of
Lie algebras

^ : 0(JR) -^ Wn

r\

given by y(Eij) = Xz.—, where E^ is the elementary matrix with 1 in
(JX i

the i-th row and j-th column, and zeroes everywhere else. The image of y
consists of the one jets in Wn- Using the Hochschild-Serre spectral sequence
associated to a subalgebra of a Lie algebra [HS] and invariant theory [W],
one has

2.12. THEOREM ([B] [F] [Gb]). — The E^-term of the Hochschild-
Serre spectral sequence converging to H^(Wn) has form

Er ^ %e(^n(R)) ̂  (R[Pl, . . . ,Pn]/-0,

where R[PI, ... ,Pn] is the polynomial algebra with deg(Pj) = 2j, and I is
the ideal ofR[Pi,... ,Pyj generated by polynomials of degree greater than
2n. Moreover, letting

%e(^n(R)) = A(U1^2, . . • ,0,

for certain generators ui with deg(z^) = 2i - 1, the differentials are
determined by

d2r(Ur) == Pr, T = 1, 2, . . . ,71.

2.13. COROLLARY ([Gb]). — WehaveH^(Wn) = 0 for 1 ̂  i ̂  2n
and i > n2 + 2n.

2.14. COROLLARY ([Gb]). — The Vey basis for H^(Wn) is given
by the monomials

Ui^ Ui^, . . . ,ZA^ r j ^ r j ^ , . . . ,Pĵ

where
1 <, i\ < 12 < • " < ir < n,

1 < Ji <: 32 < ' ' ' < 3s < n,
Ji + 32 + • • • + js < n,
ii +^'i +j2 +"-+J'5 > n,
zi < J i '

The above monomial is then in degree

2(%i + i2 + • • • + ir + Ji 4- J2 + • • • + j s ) - r.
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The following computation of Feigin, Fuks and Gelfand [F] is quite
useful:

2.15. THEOREM ([F]). — There is a natural isomorphism

HUW^ <) ̂  H^\Wn) 0 ̂ -e^nW).

and
var : H^\Wn) -. H^(W^ <)

is an isomorphism, where var is given in (2.3).

For its applications to the Godbillon-Vey invariant, we prove the
following:

2.16. LEMMA. — The natural map

H^W-^HL^^Wn)

is an isomorphism.

Proof. — From the Vey basis, we see that H^^^Wn) = 0. Since

^r:H^\Wn)-.H^(WnM
is an isomorphism, it follows from (2.8) that HR2n~l(Wrt) = 0. Actually,

HR\Wn)=Q for z = 0 , l , 2 , . . . , 2 n - l ,

and, therefore, H^(Wn) = 0 for % = 0,1,... ,2n—l. The lemma follows from
(2.7). D

2.17. COROLLARY. — IfaGv is a cochain representing the universal
Godbillon-Vey invariant in H^^CWn), then OGV represents a non-zero
class in HL^^Wn).

Proof. — The corollary follows from (2.16). D

We may now state the main calculational result of the paper.

2.18. THEOREM. — Letting T denote the tensor algebra, there is
an isomorphism of dual Leibniz algebras (n any positive integer)

HL^Wn) ̂  R e [Im ® A] (g) T(A 0 B),
Im = Im(var)
A == coker(var)[l]
B^ker(var)[-l],
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where R is in dimension zero.

Proof. — We illustrate several techniques germane to the proof by
considering the special case n = 1 for which

77'9 (W \ J R? q = 3

H^(W,)=^ ^herwise,

and ker(var) = 0. Note that HR2(W\} is generated (as a vector space) by
a tensor h: TV04 -^ R,

h € coker[var : ̂ (TVi) -^ ̂ ( î; W{)},

and jn^Wi) = 0 for i -^ 2. Moreover the alternating tensor / : TV03 —> R
corresponding to the Godbillon-Vey invariant generates HL^(W\). In the
Pirashvili spectral sequence dr = 0 for r >, 2, whence as vector spaces
(2.19) ^L*(TVi) ^R^[HL3(Wz)eHR2{W^}^T(HR2(W^).
Certainly f2 = 0 in HL*(W^), since HI^^W^ = 0, but also since f2 € F4

(the fourth filtration degree), and

H^/F^^O.

We now show that h 0 h is represented by /i2 (i.e. /i • h) in ff-L*(Tyi).
This would follow by showing that h^h is represented by h2 in H^(F2 / F 3 ) .
From (2.11) we conclude that h2 — h 0 h € F2. By omitting the identity
permutation in the definition of Loday's product, we have
(2.20) h2-h^heF3.
The proof of this requires four cases as in (2.11) and the fact that no
permutation shuffles a factor into the first tensor position, where h is not
alternating. (See (2.4) for the formula of the shuffles.) Thus, h2 — h 0 h = 0
in E\ and in HL*(W-^). By a similar argument,

h ' ( h ' h ) , h^)h2, and h^h^h
represent the same element in HL*(W\}. By induction, the cochains

h ' ( h ' (h' • ' ( h ' h) ' - •)) and h^h 0 • • • (g) h
n-many n-many

represent the same element in HL*(W^). A similar statement is valid for

f ' ( h ' ( h ' " ( h ' h ) ' - ) ) and /(g)/i(g)/i(g) • • • 0h.
Of course, hf represents zero in HL*{W\\ since hf € F5. For n > 1, this
type of filtration argument can be used to determine products between
elements in T(A 0 B) and Im.
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For any positive integer n and q > n2 + 2n, we have H^(Wn) = 0,
and, therefore,

HL^W^^H^^Wn).

Since H^(Wn) = 0 for q = l ,2, . . . ,2n, and ff9(^;T^) = 0 for
q == 0,1,2,.. . ,2n - 1, we see that ^L^H^) = 0 for q = 1,2,... ,2n. Also,
I^(^) = o for q = 0,1,2,. . . ,2n - 1 and for q > n2 + 2n. It follows that
for 0 < q < 4n

^eW) ̂  ^^(Hn) ^ (ker(var)[-3] ecoker(var)[-l]) .

Thus, for 1 ̂  g < 4n + 2
^L9^) 2^ Im(var) C coker(var)[+l].

We now show that for r > 2, dr{a (g) ^0) = 0, where a € .?W(^),
1 <, q < 4n + 2, and

/? G J:f^(Hn) ^ ker(var)[-3] C coker(var)[-!], j > 0.
In the E2 term represent a(8)/3asQ;-/3ina fashion similar to (2.20). Then

d(a . /?) = {da) . /3 + (-1)1^0 . (d(3).
Necessarily da = 0. If (3 corresponds to an element of coker(var), then
d/3 = 0. If f3 corresponds to an element of ker(var), then

df3e^(Wn),
and d(3 represents zero in HL*(Wn)' Thus, a ' d/3 is zero in HL*(Wn), and
the map

HL^Wn)-.H^\Wn)

sends the Leibniz cohomology class of a ' d(3 to zero. It follows that
dr(a<S>(3) =0, r > 2.

To compute the boundary map

Q '' H^(Wn} -. ̂ (Wn), q > 4n + 1,
first consider elements in H^(Wn) represented by a • /?, where either
a €lm(var) or a C coker(var), and either /3 € coker(var) or /? corresponds
to an element of ker(var). Then as cochains

Q{a. /?) = (-1)^0 . (d(3) € ̂ (Wn),
where fci = |a|,fc2 = |/3|. Either d/3 = 0 or df3 e W(Wn) as above. The
notation S{a'(d(3)) is introduced to denote the cochain a'{dfS) symmetrized
over the symmetric group, i.e.

S{a' (d/?))(^i 0 • • • 0 ̂ +3) = (a • (d/3)) ( ̂  sgn((r)^(i) 0 • . • 0 ̂ +3))
<yeSg+3
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for ^i, . . . ,^+3 e H^n. On one hand,
S(a . (d/?)) = (-1)^5(9(0 . /3)) = (-1)^ (q + 3)!3(a . /3).

On the other hand,

S(a . (df3)) = (^+^2) (5a) A (5d/3),

where A denotes the usual Lie algebra product of cochains. Certainly Sd(3
is a Lie algebra cocycle. We argue that Sa is as well, and use the vanishing
of all products in H^(Wn) [F], p. 79, to conclude that the class of

(Sa) A (Sd/3)
is zero in H^(Wn)' Since a is not necessarily skew-symmetric (as an
element of C*(Wn))^ we cannot conclude that

^ ^ S{da)
^-^TT

However, using (2.15), a may be written as pi 0 p2 5 where

pi C Im (var : ̂ ^\Wn) -^ ^(H^O),

and p2 € Q^(Wn). Furthermore, in the Hochschild-Serre spectral sequence
calculation for H^{Wn'->W^) [F], p. 100, pi 0 p2 can be represented as
pi • p2 when considering Q,*(Wn', W^) as a right module over ^*(TV^). Let
Pi = |pi| and p2 = |p2h where degree is computed as elements of fl,*(Wn)-
Necessarily dpi = 0. We have

0=da=(-l)plp^•(dp^

0 = 5(pi • (dp2)) = (pl ̂ p2 ̂  1} (5pi) A (5dp2).

Since pi and dp2 are skew-symmetric, 0 = pi A (dp2). Now,

Sa = 5(pi .p2) = (P1^P2^ ^(^Pi) A (5p2)

=Pi(pi +P2 - l)!pi Ap2,
and

d(Sa) = (-l^pi^i +p2 - l)!pi A (dp2) = 0.

Thus, Sa is a Lie-algebra cocycle.

Technically the proof proceeds by induction on the number of tensor
factors in a monomial in HL*(Wn)^ since the Pirashvili spectral sequence
for H^(Wn) requires knowledge of HL*(Wn) in lower dimensions. Having
begun this induction, we show that

dr(^ ' (02 • (• • • (ak-i -Ok)- •))) = 0, r > 2,
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where 0:1 G Im(var) or ai € coker(var), and for i >_ 2, either o^ e coker(var)
or Q^ corresponds to an element in ker(var). This follows from

d(ai -(02 • ( • • • (a fe- i •afc) • • • ) ) )
=(dai) • (02• (• • • (ofc-i • Ofc) • • •))
+(-l)lallal . d(a2 • (03 • • • (afc-i . afe) • . . ) ) .

As a cochain, dai = 0. Letting

7 = 02 • (03 • (• • • (afc_i • afc) • • •)),

we note that d^y represents zero in HL*(Wn). Thus, ai • d^ is zero in
HL*(Wn)^ and the map

HL\W^^H^\Wn)

sends the class of a\ • c?7 to zero.

To conclude the computation of 9 : H^(Wn) -^ H^(Wn), note
that

9(a i . (o2-( - - - (o fc- rafc) • • • ) ) )
= ± Oi • (d02 • (• • - (Ofc-l • Ok) • ' •))

=L ai • (02 • (• • • ((dafc-i) - afc) • • •))
± ai • (02 • (• • • (a^-i . (da^))...)) € ^*(H,).

Thus, 9(ar(o!2'(- • • (ak-i'ak) • • •))) is a linear combination of the cochains

5'ai A S{da^ A 503 A • • • A Sak,
5ai A 502 A S(da3) A • • • A 5'Ofc,

S'ai A 502 A ^03 A • • • A S{dak).
Letting (3 = o^, z > 2, note that ai • /? is a Leibniz cocycle. Thus,

0=d(a i . /? )=ai . (d /3) .

From 5(ai • (d(/?)) = 0, it follows that over R, Sa^ A (5'd/?) = 0. Thus,
each summand in the expression for

<9(ai • (02 • (• • • (afc-i • OA;) • • •)))

is zero. D
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3. The characteristic map for Leibniz cohomology.

Recall that for a C00, codimension n foliation ^ on M with trivial
normal bundle, there is a characteristic homomorphism [B] [F] [H]

chary : H^(Wn) -^ H^M).
In this section we conjecture the existence of a homomorphism

Ly : HL^Wn) -^ HL^x{M^C°°(M))
so that the following diagram commutes

Ht^Wn) cha^ H^(M)
(3.1) I [

HL^Wn) -^ ^L*(x(M);GOO(M)),
where H^(M) -^ ^L*(^(M); C°°(M)) is given in (1.8). A fixed foliation
determines a splitting of tangent bundle
(3.2) TM c± TLM C T^M,
where T^M is the tangent space to the leaves and T^M is the normal
bundle. For the special case n == 1, let a; be a determining one-form for
the foliation 3'. Then uj{vp) = 0 for Vp € T^M, and uj{vp) = 1, where Vp is
chosen to be a unit vector with positive orientation in T^M. Moreover, the
splitting of the tangent bundle (3.2) yields a vector space isomorphism

x(M)^XL(M)CXr,(M),
where ̂ ^(M) are vector fields along the leaves and ;\^(M) are vector fields
perpendicular to the leaves. Given any X € \(M)^ we may write X uniquely
as a sum XL + Xrj^ where

XL e XL(M) and X^ C x^(M).
Define L^ : x(M) ^ C°°(M) by L^(X) = f, where f(p) = ̂ (X^p)) for
all p € M. Then L^ is simply the image of a; under the inclusion

^(M) -. Hom^O^M^G^M))
given in (1.8). In this way, all canonical one-forms used to define chary in
the commutative framework occur as elements of

Hom^O^M^C^M)).
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