In this paper we construct complete minimal surfaces of arbitrary genus in with one, two, three and four ends respectively. Furthermore the surfaces lie between two parallel planes of .
Dans cet article nous construisons des surfaces minimales complètes de genre arbitraire dans ayant un, deux, trois et quatre bouts respectivement et, de plus, les surfaces sont situées entre deux plans parallèles de .
@article{AIF_1996__46_2_535_0, author = {Costa, Celso J. and Sim\"oes, Plinio A. Q.}, title = {Complete minimal surfaces of arbitrary genus in a slab of ${\mathbb {R}}^3$}, journal = {Annales de l'Institut Fourier}, pages = {535--546}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {46}, number = {2}, year = {1996}, doi = {10.5802/aif.1523}, zbl = {0853.53005}, mrnumber = {97e:53015}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1523/} }
TY - JOUR AU - Costa, Celso J. AU - Simöes, Plinio A. Q. TI - Complete minimal surfaces of arbitrary genus in a slab of ${\mathbb {R}}^3$ JO - Annales de l'Institut Fourier PY - 1996 SP - 535 EP - 546 VL - 46 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1523/ DO - 10.5802/aif.1523 LA - en ID - AIF_1996__46_2_535_0 ER -
%0 Journal Article %A Costa, Celso J. %A Simöes, Plinio A. Q. %T Complete minimal surfaces of arbitrary genus in a slab of ${\mathbb {R}}^3$ %J Annales de l'Institut Fourier %D 1996 %P 535-546 %V 46 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1523/ %R 10.5802/aif.1523 %G en %F AIF_1996__46_2_535_0
Costa, Celso J.; Simöes, Plinio A. Q. Complete minimal surfaces of arbitrary genus in a slab of ${\mathbb {R}}^3$. Annales de l'Institut Fourier, Volume 46 (1996) no. 2, pp. 535-546. doi : 10.5802/aif.1523. https://aif.centre-mersenne.org/articles/10.5802/aif.1523/
[1] Power series with Hadamard gaps and hyperbolic complete minimal surfaces, Duke Math. Journal, 68 (1993), 297-300. | MR | Zbl
,[2] A complete minimal surfaces in R3 between two parallel planes, Ann. Math., 112 (1980), 203-206. | MR | Zbl
and ,[3] A non orientable complete minimal surfaces in R3 between two parallel planes, Proc. Am. Math. Soc., 103 (1988). | MR | Zbl
,[4] A survey of minimal surfaces, Van Nostrand, New York, 1969. | MR | Zbl
,[5] A cylindrical type complete minimal surfaces in a slab of R3, Bull. Sc. Math., III (1987), 241-245. | MR | Zbl
and ,[6] Trigonometric series, Cambridge University Press, New York, 1968.
,Cited by Sources: