Harmonic morphisms and circle actions on 3- and 4-manifolds
Annales de l'Institut Fourier, Volume 40 (1990) no. 1, pp. 177-212.

Harmonic morphisms are considered as a natural generalization of the analytic functions of Riemann surface theory. It is shown that any closed analytic 3-manifold supporting a non-constant harmonic morphism into a Riemann surface must be a Seifert fibre space. Harmonic morphisms φ:MN from a closed 4-manifold to a 3-manifold are studied. These determine a locally smooth circle action on M with possible fixed points. This restricts the topology of M. In all cases, a harmonic morphism φ:MN from a closed (n+1)-dimensional manifold to an n-dimensional manifold (n2, with M, N analytic in the case n=2) determines a locally smooth circle action on M.

On considère les morphismes harmoniques comme généralisation naturelle des fonctions analaytiques qu’on rencontre dans la théorie des surfaces de Riemann. On montre que chaque variété fermée et analytique à 3 dimensions qui supporte un morphisme harmonique à valeurs dans une surface de Riemann est un espace fibré de Seifert. On étudie les morphismes harmoniques φ:MN définies sur une variété fermée à 4 dimensions et à valeurs dans une variété à 3 dimensions. Ceux-ci déterminent une action du cercle sur M qui est localement différentiable, peut-être avec des points fixes. Par conséquent la topologie de M est limitée. Dans chaque cas, un morphisme harmonique φ:MN défini sur une variété fermée à n+1 dimensions et à valeurs dans une variété à n dimensions (n2, avec M, N analytiques dans le cas où n=2) détermine une action du cercle sur M qui est localement différentiable.

@article{AIF_1990__40_1_177_0,
     author = {Baird, Paul},
     title = {Harmonic morphisms and circle actions on 3- and 4-manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {177--212},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {40},
     number = {1},
     year = {1990},
     doi = {10.5802/aif.1210},
     zbl = {0676.58023},
     mrnumber = {91e:57025},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1210/}
}
TY  - JOUR
AU  - Baird, Paul
TI  - Harmonic morphisms and circle actions on 3- and 4-manifolds
JO  - Annales de l'Institut Fourier
PY  - 1990
SP  - 177
EP  - 212
VL  - 40
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1210/
DO  - 10.5802/aif.1210
LA  - en
ID  - AIF_1990__40_1_177_0
ER  - 
%0 Journal Article
%A Baird, Paul
%T Harmonic morphisms and circle actions on 3- and 4-manifolds
%J Annales de l'Institut Fourier
%D 1990
%P 177-212
%V 40
%N 1
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1210/
%R 10.5802/aif.1210
%G en
%F AIF_1990__40_1_177_0
Baird, Paul. Harmonic morphisms and circle actions on 3- and 4-manifolds. Annales de l'Institut Fourier, Volume 40 (1990) no. 1, pp. 177-212. doi : 10.5802/aif.1210. https://aif.centre-mersenne.org/articles/10.5802/aif.1210/

[1] P. Baird, Harmonic maps with symmetry, harmonic morphisms and deformations of metrics, Research Notes in Math., 87, Pitman, (1983). | MR | Zbl

[2] P. Baird, Harmonic morphisms onto Riemann surfaces and generalized analytic functions, Ann. Inst. Fourier, Grenoble, 37-1 (1987), 135-173. | Numdam | MR | Zbl

[3] P. Baird and J. Eells, A conservation law for harmonic maps, Geometry Symp. Utrecht (1980), Springer Notes, 894 (1981), 1-25. | MR | Zbl

[4] P. Baird and J.C. Wood, Bernstein theorems for harmonic morphisms from R3 and S3, Math. Ann. 280 (1988), 579-603. | MR | Zbl

[5] P. Baird and J.C. Wood, Harmonic morphisms and conformal foliations of 3-dimensional space forms, preprint. | Zbl

[6] A. Bernard, E.A. Campbell and A.M. Davie, Brownian motion and generalized analytic and inner functions, Ann. Inst. Fourier, Grenoble, 29-1 (1979), 207-228. | Numdam | MR | Zbl

[7] G.E. Bredon, Introduction to Compact Transformation Groups, Academic Press, (1972). | MR | Zbl

[8] M. Brelot, Lectures on Potential Theory, Tata Institute of Fundamental Research, Bombay, (1960). | MR | Zbl

[9] C. Constantinescu and A. Cornea, Compactifications of harmonic spaces, Nagoya Math. J., 25 (1965), 1-57. | MR | Zbl

[10] J. Eells, Regularity of certain harmonic maps, Global Riemannian Geometry, Durham (1982), E. Horwood (1984), 137-147. | Zbl

[11] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., 10 (1978), 1-68. | MR | Zbl

[12] J. Eells and L. Lemaire, Selected topics in harmonic maps, C.B.M.S. Regional Conference Series 50, A.M.S. (1983). | MR | Zbl

[13] J. Eells and A. Ratto, Harmonic maps between spheres and ellipsoids, preprint, I.H.E.S., (1988).

[14] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. | MR | Zbl

[15] D.B.A. Epstein, Periodic flows on 3-manifolds, Annals of Math., 95 (1972), 68-82. | MR | Zbl

[16] D.B.A. Epstein, Foliations with all leaves compact, Ann. Inst. Fourier, Grenoble 26-1 (1976), 265-282. | Numdam | MR | Zbl

[17] D.B.A. Epstein, Pointwise periodic homeomorphisms, Proc. London Math. Soc., (3) 42 (1981), 415-460. | MR | Zbl

[18] R. Fintushel, Classification of circle actions on 4-manifolds, Trans. Amer. Math. Soc., 242 (1978), 377-390. | MR | Zbl

[19] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier, Grenoble, 28-2 (1978), 107-144. | Numdam | MR | Zbl

[20] M. Greenberg, Lectures on algebraic topology, Benjamin, 1966.

[21] R.E. Greene and H. Wu, Embeddings of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier, Grenoble, 12 (1962), 415-571. | Numdam

[22] D.A. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Memoirs Amer. Math. Soc., vol 28, n° 236 (1980). | MR | Zbl

[23] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), 215-229. | MR | Zbl

[24] C.G.J. Jacobi, Uber Eine Particuläre Lösing der Partiellen Differential Gleichung ∂2v/∂x2 + ∂2v/∂y2 + ∂2v/∂z2 = 0, Crelle Journal für die reine und angewandte Mathematik, 36 (1847), 113-134.

[25] J. Milnor, Microbundles I, Topology, Vol. 3 Suppl. 1, (1964), 53-80. | MR | Zbl

[26] J. Milnor, Singular Points of Complex Hypersurfaces, Annals of Math. Studies, 61, P.U.P., 1968. | MR | Zbl

[27] J. Milnor, On the 3-dimensional Brieskorn manifolds M(p, q, r), Knots, Groups and 3-manifolds, ed. L.P. Neuwith, Annals of Math. Studies, 84, P.U.P. (1975), 175-225. | MR | Zbl

[28] P.S. Pao, Non linear circle actions on the 4-sphere and twisting spun knots, Topology, 17 (1978), 291-296. | MR | Zbl

[29] A. Ratto, Harmonic maps from deformed spheres to spheres, preprint. | Zbl

[30] D. Rolfsen, Knots and Links, Mathematics Lecture Series 7, Publish or Perish, (1976). | MR | Zbl

[31] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc., 15 (1983). | MR | Zbl

[32] C.L. Siegel, Topics in Complex Function Theory I, Wiley, 1969. | Zbl

[33] R.T. Smith, Harmonic mappings of spheres, Amer. J. Math., 97 (1975), 364-385. | MR | Zbl

[34] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, 1951. | MR | Zbl

[35] W.P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., 6 (1982), 357-381. | Zbl

[36] I. Vaisman, Conformal foliations, Kodai Math. J., 2 (1979), 26-37. | MR | Zbl

[37] J.C. Wood, Harmonic morphisms, foliations and Gauss maps, Complex Differential Geometry, ed. Y.T. Siu, Contemporary Mathematics, 49, A.M.S., (1986), 145-183. | MR | Zbl

[38] Y.H. Yiu, Quadratic forms between spheres and the non-existence of sums of squares formulae, Math. Proc. Camb. Phil. Soc., 100 (1986), 493-504. | Zbl

Cited by Sources: