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HARMONIC MORPHISMS
AND CIRCLE ACTIONS

ON 3- AND 4- MANIFOLDS

by Paul BAIRD

0. Introduction.

A continuous mapping (f>: M —> N between Riemannian manifolds
of dimensions m,n respectively, is a harmonic morphism if, for every
functions / harmonic on an open set V in TV, the composition / o (f> is
harmonic on ^V in M. They are characterized by being harmonic maps
and horizontally conformal [19], [23]. In particular if (f> is non-constant we
must have m > n. If m = n = 2, the harmonic morphisms are precisely
the weakly conformal mappings. A more detailed account of this class of
mappings is given in Section 1.

Certain algebraic equations determine multiple valued harmonic mor-
phisms defined on S3 (see Section 2). Given such a mapping V7? by cutting
and glueing copies of 53 we may build up a 3-manifold M regarded nat-
urally as a branched cover of S3. We also have associated a single valued
harmonic morphism (f> : M —^ N onto some Riemann surface N. When
we restrict (j) to the different sheets of the branched covering M —»• 53,
(f) takes on the various values of the multiple valued harmonic morphism
^. Uniformization in this context amounts to endowing M with a smooth
Riemannian structure whilst preserving the property that (j) be a harmonic
morphism.

It is a natural question to ask which 3-manifolds may be constructed
by this method. One of our main theorems (Theorem 3.10) asserts that :

Key-words : Harmonic morphism - Seifert fibre space - Circle action.
A.M.S. Classification : 57N10 - 57N13 - 58E20.
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If(f>: M —> N is a non-constant harmonic morphism from a closed
analytic 3-manifold to a Riemann surface, then M must have the
structure of a Seifert fibre space.

In particular a harmonic morphism from a closed hyperbolic 3-manifold
with its natural analytic structure to a Riemann surface must be constant.
This is in constrast to the situation for harmonic maps where the existence
of non-trivial harmonic maps from closed hyperbolic 3-manifolds to Rie-
mann surfaces are well-known (see for example [10]). In the more general
case when M is assumed smooth rather than analytic, we are able to show
that (f) determines a C° foliation of M. Under the additional assumption
that the foliation be C1 we can again show that M has the structure of a
Seifert fibre space (Theorem 3.13).

As a partial conserve we show that (Theorem 3.17) :

Every Seifert fibre space M admits a metric with respect to which
the fibres form a con formal foliation by geodesies.

In the case when the leaf space is a smooth surface TV, then the leaves
are the fibres of a harmonic morphism ^ : M —^ N.

In Section 4 we establish a fibration criterion for harmonic morphisms
(Theorem 4.6). Precisely :

If (f>: M171 -—> N71 is a non-constant harmonic morphism (so m > n)
and (m — 2) < 2(n — 2), then (f) is a submersion and in particular
determines a fibration of M771.

This restricts the topology ofM771 and A^. For example, if(^ : S^ -^
S71 is a harmonic morphism, n > 4, then (j> must be constant. This again
contrasts with the case for harmonic maps, where the methods of Smith
[33] and Ratio [29] yeld harmonic representatives of the non-trivial class of
Tin-hi^) for all n.

In Section 5 we investigate harmonic morphisms ( j ) : M4 —> N3. We
establish the following (Theorem 5.3) :

If ( f ) : M4 —> N3 is a non-constant harmonic morphism from a closed
oriented 4-manifold to an oriented 3-manifold, then (f) determines a
locally smooth S1-action on M4. There are at most two different orbit
types, principal orbits or fixed points.

In the case M4 is simply connected, the classification theorem of
Fintushel [18] tells us that M4 is a connected sum of the manifolds <?4,
CP2 -CP2 and S2 x S2.
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We construct an example of a harmonic morphism (f> : 54 —>• S3

where the corresponding ^-action has two fixed points. Our method of
construction is to take harmonic morphisms from manifolds with boundary,
glue along common boundaries and then smooth over the joins.

We may summarize our results in terms of S'1-actions as follows.
If (f) : M71^1 —> N71, n > 2, is a non-constant harmonic morphism
from a closed oriented manifold M714"1 to an oriented manifold TV72 with
1-dimensional fibres (where M714"1 and N71 are assumed analytic in the
case n = 2), then ( / ) determines a locally smooth ^-action on M714'1. This
action has different properties as follows.

(i) If n = 2, the action has no fixed points, and is smooth except
possibly across isolated "critical" circles, where it is C°.

(ii) If n = 3, the action may have isolated fixed points and is smooth
except possibly at the fixed points.

(hi) If n > 4, the action is smooth and without fixed points.

The ideas of this paper have developed from an example first given
in [2], together with classification of harmonic morphisms from domains in
S3 described in [4]. Lemma 4.3 was first stated in [I], but with an incorrect
proof.

I would like to express my thanks to I. Aitchison, J. Eells, D.B.A.
Epstein, H. Rubinstein and J.C. Wood for their helpfull comments. In
particular I. Aitchison provided a crucial ingredient to the proof of Theorem
5.3. I would like to thank the referee for helpful suggestions. I am also
grateful to the Science and Engineering Research Council for their financial
support.

Notation and Conventions.

We use the notation M171 to denote a manifold of dimension m. Man-
ifolds will be assumed smooth, connected, oriented and without boundary
unless otherwise stated.

If M is a Riemannian manifold, we sometimes write the pair (M,p)
to indicate that g is the metric of M. If there is no confusion as to the
metric, we write |X| for ^/g(X, X) and (X,Y) for g(X,Y).
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1. A brief survey of harmonic morphisms.

Let (f> : M171 —> N71 be a continuous mapping between connected
smooth Riemannian manifolds. Then (f) is called a harmonic morphism if
for every function / harmonic on an open set V C N , the composition f Q ( / )
is harmonic on (^(V) C M. It follows by choosing smooth harmonic local
co-ordinates on N[21] that any harmonic morphism is necessarily smooth.

The harmonic morphisms are precisely the harmonic maps which
are horizontally weakly con formal (see [19], [23] and below). For a map
( j ) : R3 —>• C this is equivalent to (f) satisfying the equations

E£h
'i(^-°-

Harmonic morphisms are objects of considerable interest. Their his-
tory goes back to Jacobi [24] in 1847, who considered the problem of finding
complex-valued (harmonic) functions satisfying (1.1) and (1.2) above. They
were independently defined by Constantinescu and Cornea in 1965 in the
context of Brelot harmonic spaces.

A Brelot harmonic space is a topological space endowed with a sheaf
of (harmonic) functions. A number of axioms must be satisfied (see [8]),
one of these asserts that the Dirichlet problem be solvable. The Brelot
harmonic spaces were devised as a natural generalization of Riemann
surfaces. A harmonic morphism (called harmonic map in [9]) between two
Brelot harmonic spaces, is a mapping which pulls back germs of harmonic
functions to germs of harmonic functions.

Harmonic morphisms between Riemannian manifolds were considered
by Fuglede [19] and Ishihara [23], who established many of their basic prop-
erties. More recently they have been studied in the context of stochastic
processes, where they are found to be the Brownian path preserving map-
pings (see [6]).

We record some of the fundamental properties of a harmonic mor-
phism below. For more details and proofs, see [19], [23], [I], [3], [12].

Let (f) : M171 —> A^ be a smooth mapping between Riemannian
manifolds. Then (f> is called horizontally weakly conformal if, for every
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x € M where d(f>x 7^ 0, the restriction of d(f)x to the orthogonal complement
(Ker d(f>x}1' is conformal and surjective. Thus there is some number
\(x) > 0 such that |d^(X)| = A(a:)|X| for each X € (Ker A^)1. Setting
A equal to 0 at critical points we obtain a continuous'function A : M —>• R
called the dilation of <^.

(1.3) [19], [23] A smooth mapping (f>: M771 —>• AP between Riemannian
manifolds is a harmonic morphism if and only if (f) is both harmonic and
horizontally conformal.

(1.4) [19] If (f> : M171 —> N71 is a harmonic morphism then m > n. If
m = n = 2, the harmonic morphisms are precisely the weakly conformal
mappings. If m = n > 3, they are the homothetic mappings.

Let ( j ) : M171 —>• N71 be a non-constant harmonic morphism.

(1.5) [19] (f) is an open mapping.

(1.6) If M is compact, then TV is compact and (/)(M) = N (this follows
from (1.5), since 0(M) is both open and closed in N).

(1.7) [3] If n = 2, then the fibres over regular points (i.e. those y e N
such that d(/>x i=- 0 for all x € ^-l(2/)) are minimal submanifolds of M.

(1.8) The composition of two harmonic morphisms is a harmonic mor-
phism.

(1.9) [19] The set K of all critical points of (f> is polar in M (see [19] for
definition). A consequence is that K cannot disconnect any open ball in M.
Further if M and N are real analytic, then so is (/) and K is a real analytic
set of codimension > 2.

In Section 5 we use the concept of an /i-harmonic morphism as defined
by Fuglede [19].

Let h: M771 —> R be a smooth function such that 0 < h(x) < oo for
all* re e M. A C^-function / : U —> R, defined on an open set U C M, is
h- harmonic if

A/+2^(Vlogfa, V/)=0,

where g denotes the metric of M. A continuous mapping (j>: M7"' -^ N71

is an h-harmonic morphism if, for every harmonic function / defined on
an open set V C N, the composition / o (f> is ft-harmonic on (^(y). The
/i-harmonic morphisms are characterized as those mappings which are
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(i) /i-har,monic, i.e.

(1.10) ^+2d<^(Vlog/i)=0

and

(ii) horizontally conformal.

It follows that if (f> : Af7"' —»• N71 is an fa-harmonic morphism with
respect to the metric g on At, then (f> is a harmonic morphism with respect
to the conformally related metric

(1.11) g^h^^-^g.

2. Harmonic morphisms from 53, the branching set.

We first of all outline the classification of harmonic morphisms from
domains in S'3 described in [2], [4].

Let (f) : M —> N be a non-constant harmonic morphism from a
domain M C S3 onto a Riemann surface N. Suppose in addition that

(i) (f> is a submersion (equivalently d(f>x ^ 0 for all re € M),
(ii) the fibres of (/) are connected.

Consider the cone over M in R4, P = R^M = [tx € R4; t e
(0, oo), x € M}. Let TT : P —> M be radial projection x —> x/\x\. Then the
composition $ = <^ o 71- : P —> N is also a submersive harmonic morphism
with connected fibres.

Since the fibres of (f> are minimal they are parts of great circles in 53,
so that the fibres of $ are parts of 2-planes through the origin in R4. In
particular, for each z € N we have associated an oriented 2-plane in R4.

The fundamental theorem of [4] asserts that the harmonic morphism
( / ) determines a quadruple of meromorphic functions $j : N —> C U oo, j =
1,2,3,4 such that

(2.1) E^0-^
j=i

The fibre over z e N is part of the 2-plane in R4 determined by the
equation

(2.2) Wx^ + $2(^2 + W^ + M^ = 0.
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By a result of Hoffman and Ossermain [22], all such ^ = (^1,^2, $3, $4)
may be written in the form

$=(1+/^(1-M/-^(/+^)),

where /, g are meromorphic functions on N.

We may remove conditions (i) and (ii) as follows.

If (j>: M —> N is now an arbitrary non-constant harmonic morphism
from a domain M C S3 onto a Riemann surface N. It is shown in [4] that
the fibre through a critical point of (j) is also a part of a geodesic through
that point. Thus in a neighbourhood of a critical point one has determined
a foliation by geodesies. This foliation is in fact smooth. (The proof in [4] of
this resultsjiepends on M having constant curvature.) In the case that the
leaf space N of this foliation is Hausdorff, it may be given the structure of a
smooth Riemann surface with respect to which the projection TT : M —> N
is a smooth submersive harmonic morphism with connected fibres. The
induced mapping ( : N —> N such that (f) = (, o TT, is weakly conformal.
Critical points of (f> arise from branch points of C. As before (/) determines a
quadruple ($1,^2^3? $4) of meromorphic functions, now defined on the leaf
space N, which satisfy (2.1).

In the case when M equals S3 then the leaf space N is automatically
Hausdorff and TT : S3 —> N is completely characterized by the meromorphic
functions ^. In fact it is shown in [4] that, up to an isometry of 53, TT is
the Hopf fibration and N = S2.

More generally however, suppose we are given a quadruple of mero-
morphic functions ^ = (^1,6^3,^4) defined on a domain N C C and
satisfying (2.1). In what sense does $ determine a well-defined harmonic
morphism ?

Suppose each ^ is a rational function of z, then the fibre over z is
determined by (2.2) which now takes the form

(2.3) Pn(x)zn + P,_i(rc)^-1 + ... + Po(rc) = 0,

where x = (^1,^2,^3,3:4) e 53. This may be considered as an algebraic
equation by analogy with the theory of Riemann surfaces. If we are given a
point x e 53, the solution z = z(x) of (2.3) is in general multiple valued and
we will think of (2.3) as determining a multiple valued harmonic morphism,
taking values in CUoo.
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If we write (2.3) as

P(3:;z)=0,

x = (3:1,3:2,3:3,3:4), then P is linear in the Xj and (2.1) is equivalent to the
condition

^/<9P\2 .<9P\2

?Qd =0)
9xi

J=l .̂

for each fixed 2?.

Envelope points in 53 are those points which are the intersection
points of infinitesimally nearby fibres (see [2], [4]). These are obtained by
simultaneously solving

f P = 0
(2.4) 1 ^ - n

[ 9z ~ u-

As is well known in algebra, the solutions x = (3:1,... ,3:4) of (2.4)
are obtained by solving a polynomial in the coefficient P^,P^-i,... ,Po,
called the discriminant. The solution set is precisely the set of the points x
at which P(x\ z) = 0 has a multiple root. The envelope will correspond to
the branching set in the theory of analytic functions, and is a real analytic
subset.

Example (2.5). — Consider the algebraic equation

3:1 + iX2 - Zr(x3 + 1X4) = 0,

for some positive integer r. This equation determines an r-valued harmonic
morphism on S3. For r > 2 the envelope points occur when z = 0, oo. These
correspond to the great circles (0, e177), (e^, 0) C S3. We now take r copies of
S3 and cut and paste them in an appropriate way, simultaneously cutting
and pasting the codomain C U oo. We obtain a single valued harmonic
morphism <f): M —> N from a compact 3-manifold M, in this case the Lens
space L(r,l) to the Riemann surface of f(z) = ̂ /^ S2). The manifold
M is an r-fold branched cover of 53, branched over the envelope circles.
In fact L(r, 1) is naturally a circle bundle over 5'2 and the single valued
harmonic morphism so obtained is the natural projection L(r, 1) —^ S2.
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3. A harmonic morphism from a closed 3-manifbld
determines a Seifert fibration.

In Section 2 we saw how to construct a closed 3-manifbld from a
multiple valued harmonic morphism. The question arises as to which closed
3-manifolds can be obtained in this way. We show that they are the Seifert
fibre spaces.

If (j>: M3 —> N2 is a non-constant harmonic morphism from a closed
3-manifold to a Riemann surface N, then we will show that 0 determines
a C'°-codimension 2 foliation of M. Under the additional assumption that
the foliation be C1 then the leaves are circles and a theorem of Epstein
shows that M must be a Seifert fibre space. If we assume M is analytic
then we may remove the condition that the foliation be C1 and again we
are able to show that M must be a Seifert fibre space.

Clearly near regular points (f> determines a smooth foliation. The
problem occurs at critical points of 0, i.e. those x € M where d(f>j; = 0.
Then we use a result of Fuglede which asserts that the symbol of (j) at
x, ax((j>) : TxM —> T^N is a harmonic polynomial morphism. A result
of Baird - Wood gives a precise description of this mapping and some
analysis about the point x shows that (f> determines a (C'°-)foliation in a
neighbourhood of x.

Let ( j ) : M771 —^ N71 be a non-constant harmonic morphism between
Riemannian manifolds and let E denote the critical set of 0; E = {x 6
M; d(f)^ = 0}. Fix XQ e E. Let U C M, V C N be geodesically convex
neighbourhoods of XQ C At, (f>(xo) C N respectively, over which normal
coordinates (x1,..., a^), ( y 1 , . . . , y71) are defined. That is (x1,..., x^) are
determined by the exponential map as follows :

exp^ : T^M-^M

is defined by expa;o(X) = ox(l)» where ax is the geodesic determined by
X. Then exp^o is a diifeomorphism in a neighbourhood of XQ. We assume
U chosen such that exp^1 is a diffeomorphism when restricted to U. If
^ i , . . . , Cm is an orthonormal basis for TxyM, we may write

X^x^e^ +...-+- a^e^.

If x € U satisfies exp^(x) = X, we associate the coordinates (a?1 , . . . , a^)
to x.
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Let g = gijdx^dx3, h = hkldykdyl denote the metric tensors on M,
N respectively, then

9ijW=6i^hki(0)=6ki.

Recall the order of (j) at XQ is defined to be the smallest integer p > 1
such that for some k = l , . . . ,n , the A'th component, <^ == ^ o <^), of
(f> expressed as a function of the coordinates (x1) has at least one non-
vanishing p'th order derivative 9p(f>k/9x^l ... Qx^y \a\ = o;i+.. .4-ayn = p,
at XQ.

If (f> has order p at xo(p > 1), the symbol

-, d^o : T^M -^ T^N

is defined componentwise by

1 d^Vci + ... + a^) = ̂  ———————- ^p(t> ,
p\ ^^ai\a^...am\ 9x^1 ...Qx^

((^...(a771)^,

for Jfc = l , . . . ,n. This is well-defined and independent of the choice of
coordinates.

Put ̂  = ^ d^\ so that ^ = (^,... ,^) : T^M ̂  ^(^)AT denotes

the symbol.

Note : We identify points in U and the tangent space T^M via expa;o
and we assume XQ and (j)(xo) correspond to the origin in their respective
coordinate systems.

THEOREM 3.1 (Taylor's formula - see for example [19]). — Near tAe
point XQ,

(a) (f>k(x)=^(x)+0(rP^) (r=\x\)

(b) Dic|>k(x)=D^k(x)+0(rP),

for i =1,... ,m; k = 1,... ,n, where Di = 9/9xi.

THEOREM 3.2 [19]. — For each x € M, the symbol ^ : T^M
—^ T0(a;)N is a harmonic morphism defined by homogeneous polynomials
of degree p (where p is the order of (f> at x).
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THEOREM 3.3 [4]. — If ^ : R3 -)> R2 is a non-constant harmonic
morphism, then $ is an orthogonal projection R3 —> R2 followed by a
weakly conformal map R2 —> R2.

Assume from now on that m = dim M = 3 and n = dim N = 2.

Note that the regular fibres of (f) carry a natural orientation defined as
follows. At each regular point x e M, we may orient the horizontal space
Hx = kerd^ such that d(f>\H^ : -Ha; —^ T^^N is orientation preserving.
Then we orient the vertical space Vx = ker d^a; such that the orientations
on Vx and Hx combine to give the orientation on M.

Let 7 : U \ E -^ T^dJ \ E) denote the Gauss map of (f>, where
T1{U\T^} denotes the unit tangent bundle over ?7\E. Thus 7 associates to
each x € U \ E the unit tangent vector to the (oriented) fibre of (/> through
x. Under the trivialisation of TU given by the coordinates (a?1, a;2, a;3), we
may think of 7 as a map 7 : U \ E —^ S2 C T^M = R3.

LEMMA 3.4. — 7 extends continuously across E and the integral curves
0/7 determine aC°- foliation ofM by geodesies. The leaves of the foliation
are the fibres o{(/>.

Remark. — This result was established for domains in R3 using
probabilistic arguments, by Bernard, Campbell and Davie [6].

Proof. — Let XQ € E. From Theorems 3.2 and 3.3, there is a well-
defined direction at XQ, given by the fibre through 0 € T^M ̂  R3 of the
symbol $. We may assume this is 63. Define 7(2:0) =63.

Without loss of generality we may also assume ^ : R3 —> R2 ^ C is
given by

^x\x2,x3)=(xl+ix2)p.

That is ^(u,x3) = vp\u = x1 + ix2. Then the dilation A of ^ is given by
A ^l-u^"1, so that

iv^^w-2,
f o r f c = l , 2 .

Let W C U be the slice determined by x3 = 0 {W is a smooth
surface).

Claim. — Provided U is taken small enough, we may assume XQ € W
is the only critical point of (f>\w-
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Proof of claim. — ^7^(x) = p\u\p-lwk(x), k = 1,2, for x ^ 0, where
wk(x) is a unit vector in S2 perpendicular to 63. From Theorem 3.1(b)

V^V^+O^).

Suppose x € W, x ^ 0, V^a;) = 0. Then

O^I^-^^+CW).

But |̂ | -^ 0, so dividing by \u\p~l implies

0=^(3;)+0(|^|).

This is impossible if W is small enough, establishing the claim.

First of all we show that if yn is a sequence of points in TV, yn —^ XQ,
then 7(2^) -^ 7(3:0) = 63. For

(V^(yn), 7(2/n)) = 0,

A = 1,2. Put 7(^) = cosi?(^)e3 + sini?(^)v(^) e 52, where v(^) e 5'2

satisfies (e3,v(yn)} = 0. From Theorem 3.1(b) :

V^(2/n)=V^(^)+0(|<),

so

(V^Q/n) + 0(1^1^,, cosi?(^)e3 + sin^)^)} = 0,

which implies

(3.5) 0(10 = sin^(t/,)(V^(^),^(^)}.

As before V^(^) = pl^l^-^^^), where w^.w2^) e 52 are
perpendicular to 63 and orthogonal. Thus

(3.6) ——=T<V^(2/n),l;(2/n))=^Wfc(^),l;(^)) ^4 0

as |n| -+ 0, for one of k = 1,2. (In fact wk(yn) approaches any direction as
Vn —> 0, depending on the choice of sequence y^.)

From (3.5)

sm^yn)p(wk(yn),v(yn)) = 0(\u\) —— 0,

a5 |IA| -^ 0. Then from (3.6), i?(^) -^ 0 as \u\ -> 0, which implies
7(2/n) -^3 = 7(a:o).
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Thus ^y(x) varies continuously as x varies over W, further ^y(x) is
transverse to W if W is taken small enough (since 7(^0) = 63 is transverse
at .TO € TV).

Consider the geodesic passing through XQ determined by 63. Call it
a(t) = (0,0,^). Then (j)(a(t)) = constant. For if not, so (f)(x) ̂  ^0), x =
a(t) € U, for some ^. Let yn e IV be a sequence of points yn -> XQ. Then
7(2/n) —)> 7(a;o), so the geodesies, which are the fibres of (f) through ^,
become arbitrarily close to the geodesic a(t), contradicting the continuity
of<^.

Consider nearby slices Wt C U given by x3 = t, t e (~£,e) for some
small e > 0. Let A C W be a small open disc in W with XQ E A, chosen
so that the mapping TT^ : A —^ W^, obtained by moving along a geodesic
determined by 7] A until is hits Wt, is well defined. Note that provided e is
taken small enough by the continuity of 7]^ this is possible, and we may
assume the geodesies intersect the Wt transversally.

By the continuity of 7|vy, TT^ is a continuous mapping. We claim
that TTt is injective. For suppose not. Let 1/1,2/2 ^ A, y\ / y^y be such
^t(yi) = 71-1(2/2) tor some t e (-£,£). Then (f)(y^) = ^(2/2). Since a;o € A
is the only critical point of (/)\A we may assume 2/2 is a regular point for
(J)\A- Hence by the Inverse Function Theorem, there is a neighbourhood
V of 2/2 in A with 1/1 ^ V, such that <^|v is a diffeomorphism. Then
^s\v '' V —^ Ws is injective and by Invariance of Domain [20], Theorem
18.9, is a homeomorphism onto its image. By construction 71-5(1/2) e ^(V)
and the union of the sets 7Ts(V) forms a tubular neighbourhood of the
geodesic passing through 1/2.

W



190 PAUL BAIRD

By continuity there are points y e V \ {y^} such that the geodesic
through y intersects the geodesic through yi. For such y, (f)(y) = (t>(yi)
= 0(^2)) a contradiction. Hence 71-1 : A —^ W< is injective, and again
applying Invariance of Domain we see that the family of sets {^(A)}^-^)
fill out a neighbourhood ofrro foliated by geodesies. It follows that ^(yn) —^
7(3:0) = 63 for any sequence yn -^ XQ and that M is foliated by the fibres
Of (/>. D

LEMMA 3.7. — Suppose the foliation determined by (/) is C1. Let F
be a connected component of a fibre of (f> and suppose some XQ e F is a
critical point of (j>. Then the whole fibre component F is critical.

Proof. — Take a slice through XQ as before, and let B be a sufficiently
small ball centred at XQ such that B is foliated by the fibres of (j) transverse
to W. Let TT be the projection, TT : B —> W, obtained by projecting down
the fibres of (j). Then (J)\B factors as (/>\B = (f>\w ° TT- So for x € F H B,

d(l>(x)=(d<l>\w)(7r(x))od7r(x)
= (d(t>\w)(xo) o d7r(x)
=0.

Thus the set of critical points in F is open in -F. Since the set of
critical points in F is also closed in F, the whole of F must be critical,
establishing the lemma, n

LEMMA 3.8. — IfM3 is compact and either (a) M3 is analytic, or (b)
the foliation induced by (f> is C1, then all fibres ot(j> are compact and so are
circles which foliate M.

Proof. — Let F be a regular fibre component of (f>. If x € -F, take a
small slice W through x transverse to F. The derivative of (j)\w '- W —^ N
has rank 2 at a; and so by the Inverse Function Theorem is a local
diffeomorphism. Thus provided W is taken small enough we may assume
-F does not intersect W again. It follows there is a small ball Bg(x) centred
at x, such that F only passes once through Bs(x). Cover F with these balls
and extend to a cover of M. Since M is compact there is a finite subcover.
Thus F is covered by finitely many such balls and F is compact.

If now the foliation is C1 and F is a critical fibre component, we may
use the Claim of Lemma 3.4 to ensure that F does not return arbitrarily
close to itself. Again we can cover F with a finite number af balls and F is
also compact.
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If on the other hand M3 is analytic and we assume the foliation is
merely (7°, then by a standard property of harmonic mappings 0 is analytic.
Now let XQ C F and take a small (analytic) slice W through XQ as before
such that the fibres of (j) hit W transversally. Then (j)\w is analytic and if
F winds back arbitrarily close to XQ, (f>\w will be constant on a set having
an accumulation point at XQ. Thus (f>\w is constant, a contradiction. Thus
F does not return arbitrarily close to XQ and we cover F with balls and
proceed as before, n

Remark 3.9. — In the case that M3 has constant curvature it follows
by a result in [5] that the foliation by circles is smooth. Since the leaves
are compact, by Theorem 4.2 of [16] the leaf space N is Hausdorff. By
results of [5], N may be given the structure of a Riemann surface such that
the projection TT : M3 —> N is a submersive harmonic morphism. Then
(f) = C ° TT, where C = N —> N is weakly conformal. Critical fibres of (f) arise
from branch points of ^.

We now apply some results of Epstein to show that M is homeomor-
phic to one of the standard Seifert fibre spaces (I am grateful to D.B.A.
Epstein for pointing this out to me).

Consider the case when M is a closed analytic 3-manifold, so that if
(j> : M —> N2 is a non-constant harmonic morphism, then (j> determines a
(7°-foliation of M by compact circles. By [17], Theorem 13.1, the volume
of the leaves of the foliation is bounded above. Consider a fibre component
F. Then by [17] we may construct a small slice W through a point of F
which is invariant under the first return map. We may then apply Theorem
2.8 of that paper to put a Riemannian metric of constant curvature on W
such that the first return map is rotation by a rational multiple of 27T, or
reflexion in a straight line. It now follows that M is a Seifert fibre space
(see [15]).

We have therefore established

THEOREM 3.10. — Let (j) '. M —> N be a non-constant harmonic
morphism from a closed analytic 3-manifold to a Riemann surface. Then
there is a fibre preserving homeomorphism from M to a Seifert fibre space.

COROLLARY 3.11. — Let <j) : M —> N be a non-constant harmonic
morphism from a closed analytic 3-manifold to a Riemann surface. Then (f)
determines a locally smooth S1-action on M. The orbits of this action are
the fibres of (f>.
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Proof. — At a regular point x of ^, the horizontal space (kerd^a;)-1-
has a natural orientation induced from N. Together with the orientation
of M, this gives an orientation on the fibre through x. By continuity the
orientation on regular fibres extends to critical fibres, thus determining an
•S^-action on M.

Since M is homeomorphic to one of the standard Seifert fibre spaces, it
follows that each orbit has an open invariant neighbourhood on which there
exists a differentiable structure with respect to which 6'1 acts smoothly.
Hence the S1 -action is locally smooth [7]. a

COROLLARY 3.12. — If M3 is a closed analytic hyperbolic 3-manifold
endowed with any analytic metric and (f> : M3 —> N2 is a harmonic
morphism onto a Riemann surface, then (j) is constant.

Proof. — No hyperbolic 3-manifold is Seifert fibred (see [31]). D

Remark. — This is in contrast to the case for harmonic maps. For,
given a homotopy class of maps from M^to TV2, where N has negative
curvature, the existence of energy minimizing harmonic maps is well
know [10].

Suppose now that M3 is a smooth closed 3-manifold and cj>: M —> N
is a non-constant harmonic morphism onto a Riemann surface such that
the induced foliation of M3 is C1. Then by Lemma 3.8 the fibres are all
compact and by [15] M3 is a Seifert fibre space. Thus

THEOREM 3.13. — Let (j) : M —^ N be a non-constant harmonic
morphism from a closed 3-manifold to a Riemann surface. Suppose further
that the foliation ofM induced by the fibres of(f) is C1. Then there is a
fibre preserving homeomorphism from M to a Seifert fibre space.

Among the eight geometries of Thurston, six of them give rise to the
Seifert fibre spaces. They are R3, S2 x R, H2 x R, Nil, 67.2 (R), S3 (leaving
Sol and H3 as the remaining two geometries). Let E denote one of these
geometries, then the Seifert fibre spaces have the form M = E / T , where
r is a group of isometrics acting freely and properly discontinuously. The
foliation of M by circles arises from a canonical foliation of E (we refer the
reader to [31] for more details).

We end this section by showing that in the canonical metric this
foliation gives rise to a harmonic morphism E —> P2 onto a Riemann
surface P2, except when E = S3 and the orbit type {p,q) ^ (d=l,d=l).
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In this latter case, a recent result of Eells and Ratio [13] shows that the
corresponding Seifert fibration may be realized by a harmonic morphism
from S3 to S2, where S3 is now endowed with a suitable ellipsoidal metric.

(i) R3 : The foliation of R3 is by parallel lines. Orthogonal pro-
jection onto the 2-plane perpendicular to these lines is clearly a harmonic
Riemannian submersion R3 —> R2.

(ii) S2 x R : The foliation is by the geodesies t —> (x,t), x e S2.
The projection H2 x R —>• H2 is a harmonic Riemannian submersion.

(iii) H2 x R : As for case (ii) the projection H2 x R —> H2 is a
harmonic Riemannian submersion.

(iv) Nil : Nil is the Lie group of 3 x 3 matrices

r / i . .\ ^
< \ 0 1 y ; x , y , z e T i } .
[\0 0 1 } }

It may be identified with R3 endowed with the natural metric
invariant under left multiplication :

ds2 == dx2 + dy2 + (dz - xdy)2.

The canonical foliation of Nil has as leaves the fibres of the projection
TT : Nil —> R2, 7r(x,y,z) == (x,y). These fibres are geodesies with
respect to ds2. Further, at the point (x, y , z), the frame (1,0,0), (0,1, a;)
is orthonormal and horizontal with respect to TT. These map under TT^ to
(1,0), (0,1) respectively. Thus TT is a harmonic Riemannian submersion
with respect to the Euclidean metric on R2.

(v) 5'L2(R) : This space is again homeomorphic to R3 and may be
identified with {(x,y,z) e R3 | y > 0} C R3 with the metric

« dx2 dy2 / d x \ 2
ds2 =—r^——+ ( — + d z ) .

y y y y )

The canonical foliation of ^I^R) has as leaves the fibres of the
projection TT : 5'L2(R) —> H2, where H2 denotes the upper half plane and
7r(x,y,z) = (x,y). These fibres are geodesies with respect to ds2 and TT is a
harmonic Riemannian submersion with respect to the standard hyperbolic
metric on H2.

(vi) 6'3 : Consider the mapping TTp^q : S3 —>• S2 given by

7Tp^(cose^, sine177) = (cos 2^, su^e^"9^),
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where t € [0,7r/2], $, rf € [0,27r), and p,^ are coprime integers. The fibres
of TTp^q induce a Seifert fibration of 53. The exceptional fibres are given
by t = 0,7r/2. The orbit type at these fibres is (q,p), (p,q) respectively.
Nearby fibres are geodesies with respect to the Euclidean metric only when
p,q = ±1. In this case (up to isometry of 53), 7Tp,g is the Hopf fibration.

Consider the case when at least one of p^q is not equal to ±1. Let
Q^q be the ellipsoid

^-{(^KCxC^+i^l}.

Points of Q^q may be parametrized in the form (costpe^^smtqe^), t C
[0,7r/2], $,7y € [0,27r). We assume Q^q is endowed with the Euclidean
metric induced from R4 ^ C x C. Then Eells and Ratto [13] show there
is a function a : [0,7r/2] -> [0,7T/2], a(0) = 0, a(7r/2) = Tr/2, for which the
map (f>: Q^q -> S2 given by

(3.14) ^(costpe'^smtqe^) = (cos2a(t),sm2a(t)ei(^~qri))

is a harmonic morphism. Clearly the fibres of <f> induce a Seifert fibration of
Q^q which is isomorphic to the one induced by -Kp^q on S3. (The manifold
Q^q has the structure of a Seifert bundle over an orientable base orbifold
with cone points whose angles depend on p and q [31]).

Example 3.15. — Let TT : E —> P be one of the harmonic Riemannian
submersions (i) - (v) and (vi) with |p| = \q\ = 1. Let II be a group of
isometries acting freely and properly discontinuously on E, such that 11
induces a free and properly discontinuous action r on the leaf space P.
Then we have induced a harmonic Riemannian submersion

( / ) : E / H — > P / F .

For example if Nk is the subgroup of Nil given by

r / i m p\ }
Nk = ^ ( 0 1 n 1 ; m,n,p are divisible by k

[\o o i/
Then Nil/A^ is a circle bundle over the torus T2 with 1'st Chern number
k [27]. The natural projection

f! x z\
0 1 y \ -^(a;,2/)€R2

< 0 0 1
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induces a harmonic Riemannian submersion Nil/A^; —> T2.

Example 3.16. — Consider case (vi). There is a natural action of
S1 x S1 by isometries on Q^q given by

((/^),(^2)) -^ (e^z^^z^).

This action preserves all the Seifert fibrations given by the various choices
of p and q (see [31]). Thus if II is a finite, and hence cyclic, subgroup
of S1 x 51, the quotient Mp^q = Q^q/Tl is a manifold which is naturally
Seifert fibred. In fact Mp^q is one on the Lens spaces L(r, s) endowed with
a non-standard metric. The group II induces an action on the leaf space
52, thus giving Mp^q the structure of a Seifert bundle over an orientable
base orbifold.

We may obtain a harmonic morphism '0 : Mp^q -+ S2 whose fibres
are the fibres of the above Seifert fibration as follows.

Let (f): Q^q -^ S2 be the harmonic morphism (3.14). Compose with
the n-fold cover S2 —> S2, n = f.c.m.{r,a}, given by z i-̂  ^n, to obtain a
harmonic morphism '0 : Q^y —> S2 given by

^(costpe^.smtqe^) = (cos2/?(t), su^/^e171^-^),

for some /3 : [0,7T/2] -^ [0, Tr/2], /3(0) = 0, /?(7r/2) = 7T/2. (It may be possible
to compose with z -^ zm, m < n depending on the values of p,g,r and
s). Then ^ factors through the action of II to give the required harmonic
morphism ^ : Mp^q —> S2.

In the case when the right action by S'1 is trivial, Mp^q is the Lens
space L(r, 1), r > 2 . I f p = ^ = l , then Q^q = 53, and we have retrieved
Example 2.5.

Recall the definition of a conformal foliation [36]. Let T be a foliation
of a smooth Riemannian manifold (M771,?). Thus T is represented by a
smooth integrable distribution V C TM of rank k. Let H C TM denote
the orthogonal distribution and let g\n denote the restriction of the metric
to H. The foliation T is conformal if

(Cw9\H)(X^Y)=a(W)g(X,Y)

for all x e M,X,V e H^, W EVx, where Cw denotes Lie differentiation
in the direction W and a(W) is a non-negative number which depends only
on W and not on X and Y.
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Suppose we are given a smooth foliation of M3 which is induced by a
harmonic morphism (f>: M3 —> N2. Then it is shown in [5] (see also [37])
that the foliation is conformal. Using the above calculations and examples
we may establish a partial converse to Theorem 3.13.

THEOREM 3.17. — Every closed Seifert fibre space admits a metric
with respect to which the fibres form a conformal foliation by geodesies.

Remarks. — If M3 is a closed orientable Seifert fibre space endowed
with the metric of Theorem 3.17, then the leaf space of the associated
foliation is in general a 2-dimensional orbifold 0, with cone points corre-
sponding to critical fibres. Away from the cone points 0 may given a nat-
ural conformal structure induced from the orthogonal spaces to the leaves.
(This is well defined since the foliation is conformal). Letting K C M de-
note the union of critical fibres and C C 0 the set of corresponding points.
Then the projection M\K—>0\Cisa, harmonic morphism.

If there is a conformal map ^: 0\C —^ N to a Riemann surface N ,
which extends continuously across (7, then the Seifert fibration is induced
by a smooth harmonic morphism (f> : M —> N. Indeed (f> is a harmonic
morphism on M \ K which extends continuously across K. Since K is a
polar set in M it follows that (f> is a harmonic morphism on M. Example
3.16 illustrates this construction.

Proof (of Theorem). — Consider the foliations determined by cases
(i) - (v) and (vi) with \p\ = \q\ = 1. Then in each case the foliation
is determined by a harmonic Riemannian submersion E —> TV, and is a
Riemannian (and so conformal) foliation by geodesies. This structure is
carried over to a Seifert fibre space of the form E / T , where T is a group of
isometrics acting freely and properly discontinuously.

Consider now the foliation determined by the maps TTp^q : S3 —>• 5'2,
where p^q are coprime integers and one of |p|, \q\ is not equal to 1. Then
the only closed oriented Seifert fibre spaces which arise from TTp^ are S3

itself and the Lens spaces L(r,s) [31]. Giving S3 the ellipsoidal metric of
Example 3.16 endows these spaces with a structure with respect to which
the foliation is geodesic and conformal.

Since the above accounts for all closed oriented Seifert fibre spaces
[31], the theorem is established, n
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4. Higher dimensions - a fibration criterion.

Let (j> : M171 —> N71 be a non-constant harmonic morphism and
suppose x C M is a critical point of (f>. By the theorem of Fuglede (Theorem
3.2), the symbol o-x((f>) of (f> at x is a harmonic polynomial morphism defined
by homogeneous polynomials of degree p > 2. In this section we derive
conditions on the map a^ (<^).

Let ^ : R771 —>• R71 be a harmonic morphism defined by homogeneous
polynomials of degree p. Let A2 = IC^P/H denote the dilation of $. Then

(4.1) (V^,V^)=A2^.

Suppose ^ is normalized such that supja;|=i|$(;r)|2 = 1. Let T = {x C
5m-l;|^)|2=l}.

Define F : ̂  -> R by F(x) = \^(x)\2, and let / = F|^-i.

LEMMA 4.2. — (a) V^"'/ = 2^^V^ - 2p^\2x.
k=l

(b) A57""'/ = 2nA2 - 2p(2p + m - 2)[$|2.

Proof. - (a) V^/ = VF|^-i - ̂  ̂  (^2 = l^l2)

=2^^V^-2^|2.r.
A;=l

(b) A5'-1/ = AF|^-i - ̂ d^-i - (m - 1) |̂ |̂ -i.

NowV|^|2=2^^V^
k

and V • V[^|2 = 2 ̂  V^ • V^ = 2nA2 from (4.1).
k

Thus A5771"1/ = 2nA2 - 2p(2p + m - 2)|^[2. n

LEMMA 4.3. — m — 2 > p(?z — 2).
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Proof. — On r, V5"1"1/ = 0. Thus from Lemma 4.2,

E^'^i2^
k=l

which from (4.1) implies I^A2 = p2^4, so that A2 ̂ l^2 =p2.

Since / attains its maximum value on r, we have ^sm~l f < 0 on I\
Thus 2np2 < 2p(2p + m - 2), i.e. m - 2 > p(n - 2). D

LEMMA 4.4. — Suppose m — 2 = p(n — 2), then f is identically equal
tol.

Note. — This result is stated in [I], but with an incorrect proof.
Proof. — If m - 2 = p(n - 2), then

^sm~lf = 2nA2 - 2p(2p+p(n - 2))|^|2

=2n(\2-p2\^).

Write g = A2 - p2^2 : ^S7^-1 -^ R. Thus ^sm-l f = 2n^.
Claim. — g > 0 on .S771-1.
Proof of Claim.

(V^"1/^^"1/} =4(E^V^ -p|^,S^V^ -^l2^)
=4|$|2(A2-p2|$|2)

=4|^.

Thus, either IV'^"1/] == 0 and |$| = 0, or g > 0. But if |^| = 0, then
^ = \2 -p2]^2 > 0. This establishes the Claim.

But then A5771 / > 0, so / is subharmonic and must be constant.
Since / = 1 on r, / must equal 1 everywhere, n

LEMMA 4.5. — Ifm - 2 = p(n - 2), then ^l^m-i : S171-1 -^ S71-1 is a
harmonic Riemannian submersion denned by homogeneous polynomials of
degree p.

Proof. — Claim : for x C .S^-STa; (fibre of $ through x) C T^S171-1.
Proof of Claim. — Let x e S'771"1 and put ^(x) = y e S71'1. Suppose

^{u) C ̂ -1 (y) is a curve in the fibre over y with 7(0) = x. Then ^(7(1^)) = y.
Put /A(n) = 7(n)/|7(-u)| e S'771-1. Then

^(u))=y/^(u)\^
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by the homogeneity of ^ But ^m-i : 5'771-1 -> S^, so that \^(u)\ = 1
and 7(n) c S'771"1. This establishes the claim.

Now, since A2 = p2 on S^-1, we have VA2 -L S171-1 so that VA2 is
horizontal with respect to ^. By Theorem 5.2 of [3], VA2 is proportional to
the mean curvature of the fibres. Thus the mean curvature of a fibre of $
is perpendicular to T^771-1 and the fibres of $|^m-i are minimal in S171'1.

Clearly $|.s'm-i is horizontally conformal with dilation A2 = p2 a
constant, n

THEOREM 4.6. — Let (f> : M171 —> TV71 be a non-constant harmonic
morphism. Either (f) is a submersion everywhere and in particular is a
fibration, or m - 2 > 2(n - 2). Equality is achieved only when n = 2,3,5,9.

Proof. — If (f) has a critical point x e At, then by Theorem 3.2 the
symbol $ of (f> at x is a harmonic polynomial morphism ^ : TxM —^ T^N,
defined by homogeneous polynomials of common degree p, where p > 2.
We now apply Lemma 4.3.

In the case when we have equality m — 2 == 2(n — 2). By Lemma
4.5, $|.s'm-i : S171'1 —> S^1 is a quadratic harmonic polynomial morphism
between spheres. These have been classified by Yiu [38]. The Hopf fibrations
are the only examples, which occur when n = 2,3,5,9 and m = 2(n — 1).

D

Remark. — The inequality of Theorem 4.6 is curiously identical to
an inequality obtained by Milnor [26] in a somewhat different context. The
inequality of [26] is a condition for the existence of a "non-trivial" fibration
and is obtained by purely algebraic topological considerations.

COROLLARY 4.7. — Let ( / ) : M71^1 —^ 7V71, n > 4, be a non-constant
harmonic morphism from a closed oriented (n + l)-djmeiisjona2 manifold.
Then (f> is a fibration. In particular we must have

7Ti(M) ̂  7T,(AO, i > 3.

If N is 2-connected, so that TT^N) = TT^N) = 0, then 71-1 (M) = Z,
7T2(M) = 0. Futhermore (f) determines a smooth S1-action on M71^1 without
fixed points.

Proof. — By Theorem 4.6, (j) is a submersion everywhere and so
determines a fibration by circles. As in the proof of Corollary 3.11, these
circles carry a natural orientation and so determine a smooth 51-action on
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M71"^1 without fixed points. The conditions on the homotopy groups now
follow from the homotopy exact sequence of a fibration [34] :

. . . ̂  7T,(51) ̂  7T,(M) ̂  7Ti(N) -^ 7T,_i(51) ̂  . . . . D

COROLLARY 4.8. — Ifcj): S71^1 -)• 5^ is a harmonic morphism, n > 4,
tAen <^ is constant.

Remark. — Again this contrasts with the case for harmonic maps.
For the methods of Smith [33] yield a harmonic representative of the non-
trivial class of Ti-n+i (571) = Z2, for n = 3 ,4, . . . , 8 - this with respect to the
Euclidean metric on S^1 and S^. By allowing deformations of the metric,
Ratto [29] has shown that the non-trivial class of 7^n-{-l(Sn) is represented
by a harmonic map for all n > 3.

5. Harmonic morphisms from a closed 4-manifold
to a 3-manifbld.

As for harmonic morphisms from an (n + l)-dimensional manifold to
an Tz-dimensional manifold, where n = 2,4,5, . . . , a harmonic morphism
from a closed 4-manifold M4 to a 3-manifold determines an S1 -action on
M4. However, we now find this circle action may have fixed points.

PROPOSITION 5.1. — If (f) : M4 -> N3 is a non-constant harmonic
morphism from a 4-manifold to a 3-manifold, then (j) can have only isolated
critical points.

Proof. — Let XQ e M be a critical point of (f> and let ^ : T^M —^
T^x)^ denote the symbol of 0 at XQ. Then ^ is a harmonic polynomial
morphism defined by homogeneous polynomials of degree 2. By Lemma 4.5
and the result of Yiu [38], up to isometry ^ is the Hopf map ^ : R4 —> R3

given by

^1,^2) ^(N2-!^!2, 2^1^),
where ^i, z^ C C ̂  R2 (note that this also follows from Theorem 5.1 of [4]
after applying Lemma 4.5). In particular the dilation of ^ is

A2^2!^-2^!2,
for x C R4.
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Using normal coordinates in a small neighbourhood U about XQ as in
Section 3, we have

V^(x)=2\x\wk(x),

for k = 1,2,3, where wk(x) e 53, a; e U. By Theorem 3.1

V^=V^+0(r2), (r=|:r|).

Suppose x e U , x ^ O , is such that V^(^) = 0 for k = 1,2,3. Then

0= 21:^(3;)-}-0(r2).

But \x\ ̂  0, so

0=2wk(x)+0(\x\).

This is impossible if U is taken small enough, n

COROLLARY 5.2. — If M4 is dosed, tAen tAere are finitely many
critical points, and regular fibres are compact (and hence circles). In
particular (j> determines an S1-action on M. The fixed points of this action
correspond to the critical points of(f>.

Proof. — Since the critical points are isolated there can only be
finitely many of them. The regular fibres are compact by similar arguments
to those of Lemma 3.8. The fibres may be oriented as for the proof of
Corollary 3.11, so determining an ^-action on M. n

We recall [7] the definition of a locally smooth action.

Let M be a G-space, where G is a compact Lie group. Let P be an
orbit of type G/H and let V be a Euclidean space on which H operates
orthogonally. Then a linear tube about P in M is a tube (C?-equi variant
homeomorphism onto an open neighbourhood of P) of the form

-0: GxnV -^ M.

The G-space M is locally smooth if there exists a linear tube about each
orbit. If a; is a fixed point of the action, the above definition is equivalent to
the assertion that a neighbourhood o f r r i n M is equivalent to an orthogonal
action (there exists a G-equivariant homeomorphism onto an open invariant
set in V upon which G acts orthogonally).

Any smooth action (in the differentiable sense) is locally smooth.
Conversely, if M is a locally smooth G-space, then each orbit has an open
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invariant neighbourhood on which there exists a differentiable structure
with respect to which G acts smoothly.

THEOREM 5.3. — Let (f) : At4 —> N3 be a, non-constant harmonic
morphism from a closed oriented 4-manifold to an oriented 3-manifold.
Then (f) induces a locally smooth S1-action on M.

Proof. — Let a: € M be a regular point for <^, then there is an invariant
neighbourhood of x over which the S1 -action induced by the fibres of (j)
is smooth. Since any smooth action is locally smooth [7], it follows that
the action is locally smooth at x. It remains to check at a fixed point
(equivalently, at a critical point of cf>).

Let XQ e M be a critical point of (j). Choosing normal coordinates
about XQ € M and yo = <^(a;o) € TV as in Section 3, we may approximate ( / )
by its Taylor formula (Theorem 3.1) :

(5.4) <^)=TO+0(r3), r=H,

for a = 1,2,3, where ^ = ($l,$2,$3) : T^M -> T^^N is the symbol of
0, which, as in the proof of Proposition 5.1 we may assume takes the form

^l^2)={\zl\2-\z2\\ 22^),
^1,^2 € C. Note in particular that $ induces an orthogonal S^-action on
T^M ̂  R4, given explicitly by

e^i,^)= (e^i.e^).

We aim to show that the action induced by (f> is equivalent to the one
induced by $, at least in a small enough neighbourhood about .To-

Let V3 be a closed 3-ball in TV centred at yo of radius 6, such that
V3 contains no other critical values of (j>. Consider the nested sequence
of distance spheres S2(p), 0 < p <, 6, of radius p about yo, whose union
is V3 \ {yo}. Now ^(y3) is a neighbourhood of XQ. Let U4 denote the
connected component containing XQ.

For each p,(|>~l(S2(p)) is a circle bundle over ^(p). In fact we have
a sequence of such filling out a neighbourhood of XQ. Thus ?74 is a cone
on some 3-manifold P3. Then P3 is simply connected. For any loop in
P3 determines a topological disc in (74 passing through XQ. Since E/4 is
a manifold this disc may be deformed off XQ and contracted to a point.
Thus P3 is a homotopy 3-sphere. Futhermore P3 is a circle bundle over
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S2; in particular it is a Seifert fibre space. So P3 is diffeomorphic to S3

and regarded as a circle bundle over S2 it is equivalent to the Hopf bundle.

Since the mapping (f> and symbol $ are related by (5.4) and |$(rr)| =
|;r|2, we may assume that the radii of U4 and V3 are sufficiently small that
U4 and V3 are contained in the domain of the respective normal coordinate
systems.

Now V3 \ {yo} is homeomorphic to the product S2 x J, where I is the
half open interval (0,6}. So that ?74 \ {xo} is a circle bundle over S2 x I . We
denote this circle bundle by E. Letting B4 C T^yM be the 4-ball of radius
^/Jo, then B4 \ {0} is also a circle bundle F over S2 x I . The ^-action on
F is the orthogonal action induced by the symbol $.

Consider the circle bundle G = S3 x I over S2 x J, whose fibres are
the Hopf circles induced by the Hopf fibration S3 x {a} —> S2 x {a}, for
each a e I . Then F and G are clearly equivalent as 51 -bundles over 52 x I .

Let r : S2 x I -^ S2 x I be the retraction r(b,t} = (&,<?). Then
G = r*G. Further r^E and r*G are both equivalent. We show that E and
r^E are equivalent. The following argument is adapted from Milnor (see
[25], Lemma 6.9).

Define two coordinate charts Vi, V^ for 5'2 such that E\vi is trivial for
i = 1,2. Let Ui : S2 —> [0,8) be continuous functions such that support
Ui C Vi and

inax^=i,2^(&) = 6,

for each be S2.

We define an S^-morphism of bundles ('0,r) : E —> E. If p : E —>
S2 x I denotes the projection map, let fi : Vi x I x S1 —^ P^^Vi x I ) c
E, i = 1,2 be trivializations.
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For each i = 1,2, define a retraction r, : S2 x (0,6} -> S2 x (0,6} by

n(&,^) = (6,max(^(&))).

Note that r(b^t) is the composition r^ or^(b,t).

Each r^ is covered by a bundle morphism ̂  : E —^ E as follows. ̂
is the identity outside p"1^ x J) and

W.(M,5)] = .A(6,max((7,(&),<),5),

for each (&, t,s) e Ui x I x S1. Then -0 = -^2 ° ̂ i.

It now follows that E and r*E are equivalent. In particular E and F
are equivalent as S1 -bundles over S2 x I . Filling in the point .TO now gives
an S^-equi variant homeomorphism from ?74 to B4. Thus the S1 -action on
?74 is equivalent to an orthogonal action and is therefore locally smooth
at .TO- D

We quote the classification theorem of Fintushel for locally smooth
^-actions on a simply connected 4-manifold.

THEOREM 5.5 [18]. — Let S1 act locally smoothly on the simply
connected 4-manifold M, and suppose the orbit space M* is not a counter
example to the 3'dimensional Poincare conjecture. Then M is a connected
sum of copies of54, CP2, -CP2, and S2 x S2.

Consider the case when (f) : S41 -^ N3 is a non-constant harmonic
morphism. If ( / ) has no critical points then 0 determines a fibration of S4

by circles. In particular it determines an S1 action without fixed points. But
by the Lefschetz fixed point theorem this is impossible, so the corresponding
^-action must have at least one fixed point. By a result ofPao [28], there
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are precisely two fixed points and the orbit space is a homotopy 3-sphere.
We construct an example with N3 = S3 below. It is an interesting question
as to whether this is essentially the only example of a harmonic morphism
from 54 to a 3-manifold (up to projection 5'3 —^ S^/r where r is a group
of isometrics acting freely and properly discontinuously).

Example 5.6. — Let B71 denote the closed Euclidean n-ball in R71.
Define a map (j)\ : B4 —> B3 by

^1(^1,^2) = (|^i|2 - |^2|2, 2^1^),

for ^i, ^2 € C, \zi\2 -j- 12:212 < 1. Then <^i is a harmonic morphism which
maps the boundary <9jB4 = 53 to QB3 = S2 via the Hopf fibration
H : S3 —> S2. Moreover, if we restrict <^i to a 3-sphere S^ of radius r
in B4, then <^i sends S3: to the 2-sphere S^ of radius r2 in B3 and ^il^a
is the Hopf fibration up to a scaling.

Define ̂  : S3 x [1,2] ̂  S2 x [1,3] by

^2(rc,r)=(Jf(a;),2r-l).

Then (f>^ is a harmonic morphism and maps each boundary S3 to S2 via
the Hopf fibration. Let ^3 : B4 —^ B3 be identical to (^i.

The idea is to glue these three maps together to obtain a map
(f): M4 —> N3, where

M^^uG^x^DuB4
S3 S3

is homeomorphic to S4 and

N3=B3U(S2x[l,S\)uB3

s2 L - s2

is homeomorphic to S3. The map <^ is homotopic to the suspension of the
Hopf fibration. Note that in a neighbourhood of 0 in each B4 and in a
neighbourhood of 53 x {3/2} in S3 x [1,2], (j> is a harmonic morphism.
We smooth over the joins and reparametrize 0 to obtain an ft-harmonic
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morphism between smooth manifolds. A conformal change in the metric
then yields the desired harmonic morphism (f): 54 —» S3.

S x [ 1 . 2 ]

I4

^

$4

<3
^

^^^ ^^

<

Ẑ Z2>..

^——^<
:zy//^2>

», '
—r^
————^

^

^^

>^<z

Y//>^A^>^~^ ;̂

- ———-<

--••yy//z>

B3

S

B3

S x [ 1 . 3 ]

It suffices to consider one half of the construction only. By symmetry
the other half may be glued on.

Points of M4 may be expressed as pairs (r,a;), where r C [0,3] and
x e 5'3. Let M^ denote the one half of M4 given by 0 < r < 3/2. Define a
metric on M^ in the form

g[ =dr2 -t-^r)2^2,

where a(r) is a smooth positive function on (0,3/2) such that

(i) (7(r)=r , r e [0,1/2].

(ii) ( r ( r )=l , r e [1,3/2].

Since g[ coincides with the Euclidean metric in a neighbourhood of
r = 0, g[ is certainly a smooth metric.

Let p,(r) be a smooth positive function on (0,3/2) with the properties

(iii) /.(r)= Ion [0,1/2]

(iv) /.(r) = l/(2r - 1) on [1,3/2].

We may further assume that a and p, are chosen such that

) / ^dr^^.
./1/2 <7

• -J— 1 - — r»(v) / -dr=
./1/2 <7
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For the graphs of/A and a may be adjusted so as to have an arbitrarily
large or arbitrarily small area beneath them between 1/2 and 1, as in the
sketches below.

Define a : [0,3/2] -^ R by

^^(f^).^i o-oo /
Note that a'(r) > 0 for all r, so a 1 is well-defined on a([0,3/2]).

Put
p(u)=u'^o^l(u}),

for each u €a([0,3/2]).

Let M^ denote the opposite half of M4 obtained by reflecting in
r = 3/2. Extend (T, p,, a and p by symmetry to all r € [0,3], u € [0,4], and
let ^ be the extended metric.

Claim. — The map

0: (7^)-.(a(r),^)),

defines an /i-harmonic morphism (c.f. Section 1) from S4 to S3 with respect
to the metrics

g=dr2^a(r)2dx2

k = du2 + p(u)2dy2,

on 54 and 53 respectively, where r € [0,3], u € [0,4] and da:2, dy2 denote
the standard metrics on •53, S2 respectively.
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LEMMA 5.7. — TAe map (f> coincides with <^i on [0,1/2], with <f>^ on
[1,2] and with ^3 on [5/2,3].

Proof.—For r e [0,1/2],

a(r)=expf / — d s ]
^Jl or /

/ />1/2 2/, f1 2/z x= exp - / —ds- —-ds]v Jr cr Yi/2 o- /
/ /-1/2 2 . /tl 2^ N

= exp ( - / -ds- — ds]v Jr s 7i/2 a /

= ^exp(log4+logr2)

=r2 .

For re [1,3/2],

Q!(r) = exp( / —ds\

'^(y 2^1^
=2r- l .

By reflected symmetry (f> coincides with ^2 on [3/2,2] and with ^3 on
[5/2,3]. D

LEMMA 5.8. — The metric k = du2 + p(u)2dy2 is smooth and coincides
with the Euclidean metric for u € [0,1/4] U [15/4,4], and with the standard
metric on S2 x [1,3] for u e [1,3].

Proof. — For u e [0,1/4] we have p(u) = u, so that k coincides with
the Euclidean metric on a 3-ball of radius 1/4 in R3.

Forne [1,2],

upW = _^ —- = i,
2(a ^u) - 1

so k coincides with the standard metric on 5'3 x [1,2]. The other parts
follow by reflected symmetry, n
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PROPOSITION 5.9. — The map (j) : (54,^) —> (S3^) is h-harmonic.
Thus

T0+2c^(Vlog/i)=0,

where h: 54 —^ R is the smooth function determined by h > 0,

^ - ̂
Note. — On [0,1/2] U [1,2] U [5/2,3], h2 = 1 and so h is smooth. Also

(f> is harmonic on these sets.

LEMMA 5.10. — The tension field of(f> is given by

( „. . ^ SpW)^^^ 9T,=(a(r)4--^-a(r)-————^————) ^.

Proof. — The computation is standard, see [1]. n

Proof of Proposition 5.9. — We first establish that (f> is horizontally
conformal. Now

r\ r\

^*.- =Q/(7•) —.or on

If Yj is a unit tangent to 5'3, then Yj/a is unit for M, and

^(o,^)=(o,^ff.(y,)),
â / \ o-

where ff is the Hopf fibration. Since |-H'*^j| = 2 if 1̂  is horizontal with
respect to ff, we require

\a\r)\=2\p/a\

for horizontal conformality. But

al(r)=^(^r^ds)

, . 2/i(r)= cf(r) • ——<7(r)
_2p
— ?a

as required.
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Since a' = 2p/or, we have

,_2(apfaf-pal)
a =

or'

thus

(̂,) + ̂  ̂ (,) _ ̂  = W - ̂  ^ ̂  ,, _ W
(T <7 <T <7 (7

<0-' Q"-
=0'^-^)

\ cr a /
Q

=a' .(logr -log a').

Assume VIogTi is proportional to Q/9r. Then, since 2d^(Vlogfa)
= —T0 we must have

2^(log/^)=-^(log<7-loga /),

i.e.

log h2 = log ——
a

for some constant By and, choosing J9 = 1/2,

^2 _ P _ a^n — —^ — —2-,
a (T

completing the proof, n

Note. — By the reflected symmetry and the constancy of o-, p on the
intervals [1,3/2], [1,2] respectively, h extends smoothly across r = 3/2.

COROLLARY 5.11. — With respect to the con formally related metric

9=^9

the map (f>: (54, g) —^ (53, k) is a smooth harmonic morphism. The map
(f> has two isolated critical points at opposite poles of S4.

Proof. — This follows from (1.11). Since ( / ) coincides with ^1,^3 in a
neighbourhood of r = 0,3 respectively, (f> has critical points at r = 0,3. n
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Remark. — By the same reasoning as for Proposition 5.1, it follows
that any harmonic morphism (f> : Mm —> AP, where (m,n) == (4,3),
(8,5), (16,9) can have only isolated critical points. Indeed the construction
of Example 5.6 may be applied to the other Hopf fibrations S7 -^ S4 and
515 -^ S8 to yield harmonic morphisms from S8 -^ S5 and S16 -^ S9

respectively, with isolated critical points at opposite poles.
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