[Espaces stratifiés et bornes de courbure de Ricci synthétiques]
Nous prouvons qu’un espace stratifié compact satisfait la condition de courbure-dimension riemannienne si et seulement si son tenseur de Ricci est borné inférieurement par dans le lieu régulier, l’angle des cônes le long de la strate de codimension deux est inférieur ou égal à et sa dimension est au plus égale à . Ceci donne lieu à une large classe de nouveaux exemples d’espaces métriques mesurés satisfaisant la condition de courbure-dimension , qui inclut notamment les suspensions sphériques, les orbifolds, les variétés de Kähler–Einstein avec un diviseur, les variétés d’Einstein avec des singularités le long d’une courbe. Nous obtenons aussi de nouveaux résultats analytiques et géométriques sur les espaces stratifiés, comme l’inégalité volumique de Bishop–Gromov, le théorème de comparaison pour le Laplacien de la distance, l’inégalité isopérimétrique de Lévy–Gromov. Notre résultat implique en outre une caractérisation similaire des espaces stratifiés compacts de courbure minorée au sens d’Alexandrov.
We prove that a compact stratified space satisfies the Riemannian curvature-dimension condition if and only if its Ricci tensor is bounded below by on the regular set, the cone angle along the stratum of codimension two is smaller than or equal to and its dimension is at most equal to . This gives a new wide class of geometric examples of metric measure spaces satisfying the curvature-dimension condition, including for instance spherical suspensions, orbifolds, Kähler–Einstein manifolds with a divisor, Einstein manifolds with conical singularities along a curve. We also obtain new analytic and geometric results on stratified spaces, such as Bishop–Gromov volume inequality, Laplacian comparison, Lévy–Gromov isoperimetric inequality. Our result also implies a similar characterization of compact stratified spaces carrying a lower curvature bound in the sense of Alexandrov.
Révisé le :
Accepté le :
Publié le :
Keywords: Curvature-dimension condition, stratified spaces, Ricci curvature lower bounds
Mot clés : Condition de courbure-dimension, espaces stratifiés, bornes inférieures de la courbure de Ricci
Bertrand, Jérôme 1 ; Ketterer, Christian 2 ; Mondello, Ilaria 3 ; Richard, Thomas 3
@article{AIF_2021__71_1_123_0, author = {Bertrand, J\'er\^ome and Ketterer, Christian and Mondello, Ilaria and Richard, Thomas}, title = {Stratified spaces and synthetic {Ricci} curvature bounds}, journal = {Annales de l'Institut Fourier}, pages = {123--173}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {1}, year = {2021}, doi = {10.5802/aif.3393}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3393/} }
TY - JOUR AU - Bertrand, Jérôme AU - Ketterer, Christian AU - Mondello, Ilaria AU - Richard, Thomas TI - Stratified spaces and synthetic Ricci curvature bounds JO - Annales de l'Institut Fourier PY - 2021 SP - 123 EP - 173 VL - 71 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3393/ DO - 10.5802/aif.3393 LA - en ID - AIF_2021__71_1_123_0 ER -
%0 Journal Article %A Bertrand, Jérôme %A Ketterer, Christian %A Mondello, Ilaria %A Richard, Thomas %T Stratified spaces and synthetic Ricci curvature bounds %J Annales de l'Institut Fourier %D 2021 %P 123-173 %V 71 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3393/ %R 10.5802/aif.3393 %G en %F AIF_2021__71_1_123_0
Bertrand, Jérôme; Ketterer, Christian; Mondello, Ilaria; Richard, Thomas. Stratified spaces and synthetic Ricci curvature bounds. Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 123-173. doi : 10.5802/aif.3393. https://aif.centre-mersenne.org/articles/10.5802/aif.3393/
[1] The Yamabe problem on stratified spaces, Geom. Funct. Anal., Volume 24 (2014) no. 4, pp. 1039-1079 | DOI | MR | Zbl
[2] Hölder regularity of solutions for Schrödinger operators on stratified spaces, J. Funct. Anal., Volume 269 (2015) no. 3, pp. 815-840 | DOI | MR | Zbl
[3] The signature package on Witt spaces, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012) no. 2, pp. 241-310 | DOI | Numdam | MR | Zbl
[4] A. D. Alexandrov selected works. Part II. Intrinsic geometry of convex surfaces, Chapman & Hall/CRC, 2006, xiv+426 pages (edited by S. S. Kutateladze, Translated from the Russian by S. Vakhrameyev) | MR
[5] A user’s guide to optimal transport, Modelling and optimisation of flows on networks (Lecture Notes in Mathematics), Volume 2062, Springer, 2013, pp. 1-155 | DOI | MR
[6] Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam., Volume 29 (2013) no. 3, pp. 969-996 | DOI | MR | Zbl
[7] Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., Volume 195 (2014) no. 2, pp. 289-391 | DOI | MR
[8] Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., Volume 163 (2014) no. 7, pp. 1405-1490 | DOI | MR
[9] Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., Volume 43 (2015) no. 1, pp. 339-404 | DOI | MR
[10] Short-time behavior of the heat kernel and Weyl’s law on spaces, Ann. Global Anal. Geom., Volume 53 (2018) no. 1, pp. 97-119 | DOI | MR
[11] Nonlinear diffusion equations and curvature conditions in metric measure spaces, Memoirs of the American Mathematical Society, 1270, American Mathematical Society, 2019
[12] On static three-manifolds with positive scalar curvature, J. Differ. Geom., Volume 107 (2017) no. 1, pp. 1-45 | DOI | MR
[13] Ricci bounds for Euclidean and spherical cones, Singular phenomena and scaling in mathematical models, Springer, 2014, pp. 3-23 | DOI | MR
[14] L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory (Saint-Flour, 1992) (Lecture Notes in Mathematics), Volume 1581, Springer, 1994, pp. 1-114 | DOI | MR
[15] A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, 2001, xiv+415 pages | MR
[16] Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser, 1992, xiv+300 pages (translated from the second Portuguese edition by Francis Flaherty) | DOI | MR
[17] The globalization theorem for the Curvature-Dimension condition (2016) (https://arxiv.org/abs/1612.07623)
[18] Optimal maps in essentially non-branching spaces, Commun. Contemp. Math., Volume 19 (2017) no. 6, 1750007, 27 pages | DOI | MR
[19] Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds, Invent. Math., Volume 208 (2017) no. 3, pp. 803-849 | DOI | MR
[20] New formulas for the Laplacian of distance functions and applications (2018) (https://arxiv.org/abs/1803.09687)
[21] Spectral geometry of singular Riemannian spaces, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 575-657 | MR
[22] Spectral geometry of singular Riemannian spaces, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 575-657 | MR | Zbl
[23] Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., Volume 9 (1999) no. 3, pp. 428-517 | DOI | MR | Zbl
[24] On the diffraction of waves by conical singularities. I, Commun. Pure Appl. Math., Volume 35 (1982) no. 3, pp. 275-331 | DOI | MR | Zbl
[25] Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 183-197 | DOI | MR | Zbl
[26] Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than , J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 199-234 | DOI | MR | Zbl
[27] Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches and completion of the main proof, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 235-278 | DOI | MR | Zbl
[28] Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications., Ann. Math., Volume 176 (2012) no. 2, pp. 1173-1229 | DOI | Zbl
[29] On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., Volume 201 (2015) no. 3, pp. 993-1071 | DOI | MR | Zbl
[30] On quotients of spaces with Ricci curvature bounded below, J. Funct. Anal., Volume 275 (2018) no. 6, pp. 1368-1446 | DOI | MR | Zbl
[31] Classification of gravitational instanton symmetries, Commun. Math. Phys., Volume 66 (1979) no. 3, pp. 291-310 | DOI | MR
[32] On the differential structure of metric measure spaces and applications, Mem. Am. Math. Soc., Volume 236 (2015) no. 1113, p. vi+91 | DOI | MR | Zbl
[33] Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society; International Press, 2009, xviii+482 pages | MR | Zbl
[34] Kähler-Einstein metrics with edge singularities, Ann. Math., Volume 183 (2016) no. 1, pp. 95-176 | DOI | MR | Zbl
[35] Ricci curvature bounds for warped products, J. Funct. Anal., Volume 265 (2013) no. 2, pp. 266-299 | DOI | MR | Zbl
[36] Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl., Volume 103 (2015) no. 5, pp. 1228-1275 | DOI | MR | Zbl
[37] Obata’s rigidity theorem for metric measure spaces, Anal. Geom. Metr. Spaces, Volume 3 (2015), pp. 278-295 | DOI | MR | Zbl
[38] Sectional and intermediate Ricci curvature lower bounds via optimal transport, Adv. Math., Volume 329 (2018), pp. 781-818 | DOI | MR | Zbl
[39] Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z., Volume 238 (2001) no. 2, pp. 269-316 | DOI | MR | Zbl
[40] Globalization with probabilistic convexity, J. Topol. Anal., Volume 07 (2015) no. 04, pp. 719-735 | DOI | MR | Zbl
[41] Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991 | DOI | MR | Zbl
[42] The Yamabe problem on stratified spaces, Ph. D. Thesis, Laboratoire de Mathématiques Jean Leray (France) (2015) (https://hal.archives-ouvertes.fr/tel-01204671)
[43] The local Yamabe constant of Einstein stratified spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 34 (2017) no. 1, pp. 249-275 | DOI | MR | Zbl
[44] An Obata singular theorem for stratified spaces, Trans. Am. Math. Soc., Volume 370 (2018), pp. 4147-4175 | DOI | MR | Zbl
[45] Alexandrov meets Lott-Villani-Sturm, Münster J. Math., Volume 4 (2011), pp. 53-64 | MR | Zbl
[46] Non-branching geodesics and optimal maps in strong -spaces, Calc. Var. Partial Differ. Equ., Volume 50 (2014) no. 3-4, pp. 831-846 | DOI | MR | Zbl
[47] Methods of modern mathematical physics. III. Scattering theory, Academic Press Inc., 1979, xv+463 pages | MR
[48] Transport inequalities, gradient estimates, entropy, and Ricci curvature, Commun. Pure Appl. Math., Volume 58 (2005) no. 7, pp. 923-940 | DOI | MR
[49] Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam., Volume 16 (2000) no. 2, pp. 243-279 | DOI | MR | Zbl
[50] Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math., Volume 662 (2012), pp. 59-94 | DOI | MR | Zbl
[51] Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces (2017) (https://arxiv.org/abs/1706.09490)
[52] Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and -Liouville properties, J. Reine Angew. Math., Volume 456 (1994), pp. 173-196 | DOI | MR | Zbl
[53] Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., Volume 32 (1995) no. 2, pp. 275-312 | MR | Zbl
[54] Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl., Volume 75 (1996) no. 3, pp. 273-297 | MR | Zbl
[55] On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | DOI | MR | Zbl
[56] On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177 | DOI | MR | Zbl
[57] K-stability and Kähler-Einstein metrics, Commun. Pure Appl. Math., Volume 68 (2015) no. 7, pp. 1085-1156 | DOI | MR | Zbl
Cité par Sources :