For any standard quadric surface bundle over , we show that the locus of rational fibres is dense in the moduli space.
Pour tout faisceau de surface quadrique standard sur , nous montrons que le lieu des fibres rationnelles est dense dans l’espace des modules.
Accepted:
Published online:
Keywords: Hodge loci, rationality problem, quadric surface bundles
Mot clés : Loci de Hodge, problème de rationalité, faisceaux de surface quadriques
Paulsen, Matthias 1
@article{AIF_2021__71_1_97_0, author = {Paulsen, Matthias}, title = {On the rationality of quadric surface bundles}, journal = {Annales de l'Institut Fourier}, pages = {97--121}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {1}, year = {2021}, doi = {10.5802/aif.3399}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3399/} }
TY - JOUR AU - Paulsen, Matthias TI - On the rationality of quadric surface bundles JO - Annales de l'Institut Fourier PY - 2021 SP - 97 EP - 121 VL - 71 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3399/ DO - 10.5802/aif.3399 LA - en ID - AIF_2021__71_1_97_0 ER -
%0 Journal Article %A Paulsen, Matthias %T On the rationality of quadric surface bundles %J Annales de l'Institut Fourier %D 2021 %P 97-121 %V 71 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3399/ %R 10.5802/aif.3399 %G en %F AIF_2021__71_1_97_0
Paulsen, Matthias. On the rationality of quadric surface bundles. Annales de l'Institut Fourier, Volume 71 (2021) no. 1, pp. 97-121. doi : 10.5802/aif.3399. https://aif.centre-mersenne.org/articles/10.5802/aif.3399/
[1] Stable rationality of quadric and cubic surface bundle fourfolds, Eur. J. Math., Volume 4 (2018) no. 3, pp. 1-29 | MR | Zbl
[2] On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J., Volume 75 (1994) no. 2, pp. 293-338 | MR | Zbl
[3] Sums of three squares and Noether–Lefschetz loci, Compos. Math., Volume 154 (2018) no. 5, pp. 1048-1065 | DOI | MR | Zbl
[4] Infinitesimal variations of Hodge structure and the global Torelli problem, Algebraic Geometry Angers 1979 (1980), pp. 51-76 | Zbl
[5] General Components of the Noether–Lefschetz locus and their density in the space of all surfaces, Math. Ann., Volume 282 (1988) no. 4, pp. 667-680 | DOI | MR | Zbl
[6] On the existence of components of the Noether–Lefschetz locus with given codimension, Manuscr. Math., Volume 73 (1991) no. 4, pp. 341-357 | DOI | MR | Zbl
[7] Hypersurfaces quartiques de dimension 3: non rationalité stable, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016), pp. 371-397 | DOI | Zbl
[8] Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J., Volume 161 (2012) no. 5, pp. 735-801 | Zbl
[9] Toric Varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011 | MR | Zbl
[10] On the periods of certain rational integrals. I and II, Ann. Math., Volume 90 (1969) no. 3, p. 460-495 and 496–541 | DOI | MR | Zbl
[11] The finite free extension of Artinian -algebras with the strong Lefschetz property, Rend. Semin. Mat. Univ. Padova, Volume 110 (2003), pp. 119-146 | Numdam | MR | Zbl
[12] Stable rationality in smooth families of threefolds (2018) (https://arxiv.org/abs/1802.06107)
[13] Intersections of three quadrics in , Celebrating the 50th anniversary of the Journal of Differential Geometry (Surveys in Differential Geometry), Volume 22, International Press, 2018, pp. 259-274 | MR | Zbl
[14] Stable rationality of quadric surface bundles over surfaces, Acta Math., Volume 220 (2018) no. 2, pp. 341-365 | DOI | MR | Zbl
[15] A very general quartic double fourfold is not stably rational, Algebr. Geom., Volume 6 (2019) no. 1, pp. 64-75 | MR | Zbl
[16] Noether–Lefschetz locus for surfaces, Trans. Am. Math. Soc., Volume 324 (1991) no. 1, pp. 369-384 | MR | Zbl
[17] Density of Noether–Lefschetz loci and rationality of quadric surface bundles, 2018 Master’s thesis, Ludwig-Maximilians-Universität München (Germany)
[18] Quadric surface bundles over surfaces and stable rationality, Algebra Number Theory, Volume 12 (2018) no. 2, pp. 479-490 | DOI | MR | Zbl
[19] On the rationality problem for quadric bundles, Duke Math. J., Volume 168 (2019), pp. 187-223 | MR | Zbl
[20] Sur les formes quadratiques d’indice zéro, C. R. Math. Acad. Sci. Paris, Volume 234 (1952), pp. 1517-1519 | MR | Zbl
[21] Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods, Volume 1 (1980), pp. 168-184 | DOI | MR | Zbl
[22] The Griffiths group of a general Calabi–Yau threefold is not finitely generated, Duke Math. J., Volume 102 (2000) no. 1, pp. 151-186 | MR
[23] Hodge Theory and Complex Algebraic Geometry II, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2003 no. 77 | Zbl
[24] On integral Hodge classes on uniruled or Calabi–Yau threefolds, Moduli spaces and arithmetic geometry (Advanced Studies in Pure Mathematics), Volume 45, Mathematical Society of Japan, 2006, pp. 43-73 | DOI | MR | Zbl
[25] (Stable) rationality is not deformation invariant (2015) (https://arxiv.org/abs/1511.03591v3)
[26] Unirational threefolds with no universal codimension 2 cycle, Invent. Math., Volume 201 (2015) no. 1, pp. 207-237 | DOI | MR | Zbl
[27] Birational invariants and decomposition of the diagonal, Birational geometry of hypersurfaces (Hochenegger, Andreas; Lehn, Manfred; Stellari, Paolo, eds.) (Lecture Notes of the Unione Matematica Italiana), Volume 26, Springer, 2019, pp. 3-71 | DOI | Zbl
[28] The Dilworth number of Artinian rings and finite posets with rank function, Commutative algebra and combinatorics (Advanced Studies in Pure Mathematics), Volume 11, North-Holland, 1987, pp. 303-312 | DOI | MR | Zbl
Cited by Sources: