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STRATIFIED SPACES AND SYNTHETIC RICCI
CURVATURE BOUNDS

by Jérôme BERTRAND, Christian KETTERER,
Ilaria MONDELLO & Thomas RICHARD (*)

Abstract. — We prove that a compact stratified space satisfies the Riemann-
ian curvature-dimension condition RCD(K,N) if and only if its Ricci tensor is
bounded below by K ∈ R on the regular set, the cone angle along the stratum
of codimension two is smaller than or equal to 2π and its dimension is at most
equal to N . This gives a new wide class of geometric examples of metric measure
spaces satisfying the RCD(K,N) curvature-dimension condition, including for in-
stance spherical suspensions, orbifolds, Kähler–Einstein manifolds with a divisor,
Einstein manifolds with conical singularities along a curve. We also obtain new
analytic and geometric results on stratified spaces, such as Bishop–Gromov vol-
ume inequality, Laplacian comparison, Lévy–Gromov isoperimetric inequality. Our
result also implies a similar characterization of compact stratified spaces carrying
a lower curvature bound in the sense of Alexandrov.
Résumé. — Nous prouvons qu’un espace stratifié compact satisfait la condition

de courbure-dimension riemannienne RCD(K,N) si et seulement si son tenseur de
Ricci est borné inférieurement par K ∈ R dans le lieu régulier, l’angle des cônes le
long de la strate de codimension deux est inférieur ou égal à 2π et sa dimension est
au plus égale àN . Ceci donne lieu à une large classe de nouveaux exemples d’espaces
métriques mesurés satisfaisant la condition de courbure-dimension RCD(K,N), qui
inclut notamment les suspensions sphériques, les orbifolds, les variétés de Kähler–
Einstein avec un diviseur, les variétés d’Einstein avec des singularités le long d’une
courbe. Nous obtenons aussi de nouveaux résultats analytiques et géométriques sur
les espaces stratifiés, comme l’inégalité volumique de Bishop–Gromov, le théorème
de comparaison pour le Laplacien de la distance, l’inégalité isopérimétrique de
Lévy–Gromov. Notre résultat implique en outre une caractérisation similaire des
espaces stratifiés compacts de courbure minorée au sens d’Alexandrov.
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Introduction

Singular metric spaces naturally appear in differential geometry when
considering quotients of smooth manifolds, their Gromov–Hausdorff lim-
its, when they exist, or geometric flows. One of the main questions when
dealing with singularities, is how to define a good notion of curvature, or
of curvature bounds. One of the possible and more efficient ways to an-
swer this question is given by the work of K.-T. Sturm [55, 56], and of
J. Lott together with C. Villani [41], which initiated the study of synthetic
Ricci curvature bounds on metric measure spaces. In the recent years, such
study has given rise to a rich theory where significant analytic and geo-
metric results intertwine. The idea for the CD(K,N) curvature-dimension
condition is to define a lower bound K for the curvature, and an upper
bound N for the dimension, in terms of convexity for entropy function-
als in the appropriate space of probability measures, the L2-Wasserstein
space. L. Ambrosio, N. Gigli and G. Savaré [8] refined the previous condi-
tion and introduced the Riemannian curvature-dimension condition RCD,
which rules out Finsler geometries.
Some of the many good features of the Riemannian curvature-dimension

condition is that it corresponds, in the setting of smooth Riemannian man-
ifolds, to a standard lower Ricci bound, and moreover it is stable under
measured Gromov–Hausdorff convergence (mGH convergence for short).
Therefore, mGH-limits of smooth manifolds whose Ricci curvature is uni-
formly bounded below are the first, possibly singular, examples of metric
measure spaces satisfying the RCD condition. Other examples are given by
finite dimensional Alexandrov spaces with a lower curvature bound [39, 45],
and weighted manifolds with Bakry–Émery tensor bounded below. In more
general terms, it is now known that all the constructions which preserve a
lower Ricci bound in the context of smooth manifolds, cones, suspensions,
quotients, (metric) foliations/submersions, also preserve, under some tech-
nical assumptions, the RCD condition in the setting of metric measure
spaces [30, 35, 36]. However, all these examples are, in some sense, rigid:
cones in the work of the second author carry an exact cone metric; an orb-
ifold singularity is modeled on a cone over a quotient of the sphere, and
other cone sections are not allowed. If we consider a more general and flexi-
ble model for conical singularities, isolated or not, on a smooth Riemannian
manifold, there isn’t any known geometric criterion to establish whether a
synthetic lower Ricci bound holds.
The aim of this paper is to fill this gap and present a new class of geo-

metric examples satisfying a RCD condition, which includes in particular
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orbifolds, spherical suspensions over smooth manifolds, and manifolds with
conical singularities (isolated or not). More precisely, we give a criterion
on compact stratified spaces, as defined in the works of K. Akutagawa,
G. Carron, R. Mazzeo [1] and of the third author, under which such metric
measure spaces satisfy the Riemannian curvature-dimension condition.
Stratified spaces can be seen as a generalization of manifolds with isolated

conical singularities; in fact, they can be decomposed into a regular setXreg,
which is a smooth manifold of dimension n, and a closed singular set, made
of singular strata of possibly different dimensions, with a local “cone-like”
structure. This means that a tubular neighbourhood of a singular stratum is
the product of an Euclidean ball and a cone, thus we can consider not only
isolated conical singularities, but also conical singularities along a curve or
more generally along a submanifold. We focus our attention on compact
stratified spaces without boundary, hence the minimal codimension of a
singular stratum is two.
Stratified spaces were first introduced in topology by H. Withney and

R. Thom, then later studied from a more analytical point of view start-
ing from the work of J. Cheeger [21]. In this paper, we consider stratified
spaces with a Riemannian approach; indeed, it is possible to define an it-
erated edge metric (see [1, 3]) which is a Riemannian metric on the regular
set, and whose asymptotic expansion is close to a model metric, depending
on the strata to which the point where the expansion is performed be-
longs. The fact that we only require closeness to a model geometry gives
more flexibility about the choice of the iterated edge metric, including its
regularity.
In [43, 44], the third author studied compact stratified spaces with a

lower Ricci curvature bound. Note that the Ricci tensor is only well-defined
on the regular set of a stratified space; one has to be careful about the
behaviour of the metric near singular strata, and in particular near the
stratum of codimension two. Indeed, the singularities along this stratum
are modeled on a two-dimensional metric cone, which has an angle. If such
angle is smaller than 2π, then the cone has nonnegative curvature in the
sense of Alexandrov, negative otherwise. This plays an important role in
the following definition:

Definition (Singular lower Ricci bound). — Let X be a compact strat-
ified space of dimension n endowed with an iterated edge metric g. Let
K ∈ R. We say that g has singular Ricci curvature bounded from below by
K if

(i) Ricg > K on the regular set Xreg,
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(ii) the angle α along the stratum Σn−2 is smaller than or equal to 2π.

Observe that we do not need to give any condition on the strata of
codimension larger than two, since the condition on the regular set suffices
to control the behaviour of the Ricci curvature of the cone sections at
those strata. It is not the case for the codimension-two stratum. Using the
stability under mGH convergence of the RCD condition, one can guess
that some assumption on the cone angle is needed for a RCD condition to
hold on a stratified space: in fact, if the space is RCD, then all the tangent
cones must have a non-negative RCD curvature bound, and K. Bacher and
K.-T. Sturm [13] proved that a cone over a manifold of diameter larger
than π does not satisfy a CD condition.
In dimension two, the previous definition corresponds to surfaces with

sectional curvature bounded below and isolated conical singularities with
angles smaller than 2π. Such singular surfaces are known to be Alexandrov
spaces [4], and thus are examples of RCD spaces. In higher dimension,
more general singularities can occur; stratified spaces satisfying the previ-
ous definition include orbifolds, Kähler–Einstein manifolds with a divisor,
spherical suspensions over smooth manifolds (or stratified spaces) with a
lower Ricci bound.
As proven by the second and the third author, both RCD and stratified

spaces share properties with smooth Riemannian manifolds involving the
bottom of the spectrum or the diameter; corresponding rigidity results also
hold [36, 37, 43, 44].
It is then natural to expect, but not elementary to prove, that stratified

spaces with a singular lower Ricci bound also satisfy a RCD condition. We
are going to prove that the former condition is actually equivalent to the
latter. More precisely, taken for granted that a compact stratified space
admits a natural distance dg as well as a volume measure vg (see Section 1
for more on these points), our main theorem states the following:

Theorem A. — Let (X, g) be a compact stratified space endowed with
an iterated edge metric g. Equipped with its natural distance dg and mea-
sure vg, the stratified space (X, dg, vg) satisfies the RCD(K,N) condition
if and only if its dimension is smaller than or equal to N and the iterated
edge metric g has singular Ricci curvature bounded below by K.

The classical proof of the equivalence between RCD and a Ricci lower
bound on a smooth compact manifold cannot be easily extended to our set-
ting. The main obstacle is that it is a difficult problem to understand the
behaviour of geodesics on stratified spaces. In particular, it is not proven
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that minimizing geodesics between regular points avoid the singular set; in
other words, even if the stratified space carries a singular lower Ricci bound,
it is not known whether its regular set is geodesically convex (see however
Proposition 4.7 for a proof of a weaker notion). Our argument is instead
focused on proving an integral Bochner inequality. Indeed, under the as-
sumption of a singular lower Ricci bound, we prove a condition referred to
as BE(K,N), which is known to be equivalent to RCD(K,N) under some
conditions ([11, 29]). The condition BE(K,N) stands for Bakry–Émery
and is inspired by the Γ2-calculus developed by these authors, built on the
Bochner formula. We emphasize that the proof of the BE(K,N) condition
in our setting relies on a non trivial regularity result for the eigenfunctions
of the Laplacian due to [43], which strongly depends on the angle α along
Σn−2 being smaller than 2π. To prove the reverse implication, we only need
stability properties of the RCD condition mentioned above.
Not only the previous theorem gives a new ample class of geometric

examples of RCD(K,N) spaces, but also allows us to apply the rich theory
of RCD(K,N) spaces to stratified spaces. As a consequence, we obtain
previously unknown results in this setting such as Laplacian comparisons,
Bishop–Gromov volume estimate, Lévy–Gromov isoperimetric inequality.
Note that it is not immediate to deduce Laplacian comparisons and volume
estimates on stratified spaces, since the classical proofs require regularity
properties of the distance function, that can fail to be true when considering
the distance to a singular point.
Moreover, our main theorem can be used to deduce some non trivial prop-

erties of minimizing geodesics on a stratified space. In fact, it implies that
any stratified space (X, g) with a singular lower Ricci bound is essentially
non-branching and, as it was pointed to us by V. Kapovitch, its regular
set Xreg is almost everywhere convex, see Proposition 4.7. This weak no-
tion of convexity is the key to prove an analogue of Theorem A for lower
bounds on the sectional curvature. Indeed, by combining this property of
Xreg together with a result of N. Li [40], we immediately get:

Corollary B. — Let (X, g) be a compact stratified space. Then (X,dg)
has curvature bounded from below by k in the sense of Alexandrov if and
only if the following two conditions are satisfied:

(i) The sectional curvature of g is larger than or equal to k on Xreg.
(ii) The angle α along the singular stratum is at most 2π.

We emphasize that, because of the loose control we require on the iterated
edge metric near the singular strata (see (1.2) for the details), we are not
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aware of any direct argument to establish the almost everywhere convexity
of Xreg from assumptions (i) and (ii) above.

Finally, we would like to point out that the class of RCD(K,N) spaces
includes, but are not necessarily, non-collapsed Ricci limit spaces. For ex-
ample, it is known that the spherical suspension over RP2 is a RCD(K,N)
space, and it is a compact stratified space with singular Ricci lower bound
as well, but, as observed by G. De Philippis, A. Mondino and P. Top-
ping, it cannot be a non-collapsed limit of Riemannian manifolds. Indeed,
M. Simon proved in [50] that the Gromov–Hausdorff limit of a sequence of
3-manifolds with a lower bound on the Ricci tensor and an upper bound on
the diameter must be a topological manifold, which the spherical suspen-
sion over RP2 is not. M. Simon’s results proves a conjecture of M. Anderson,
J. Cheeger, T.-H. Colding and G. Tian, which has also been shown in [51]
without assuming the upper bound on the diameter.

It is in general a very difficult question to find new examples of RCD
spaces not arising as Gromov–Hausdorff limits of smooth manifolds; more-
over, even in the simple case of cones and spherical suspension, for example
over RP2, it is not easy to figure out whether they are collapsed limits of
Riemannian manifolds or not. Having a wider class of geometric examples
of RCD spaces could contribute to make progresses in solving this question.
The paper is organized as follows. The first section is devoted to illus-

trate some notions about stratified spaces which will be used through-
out the paper. In the second section, we recall the basics of curvature-
dimension conditions on metric measure spaces. We then give some exam-
ples of stratified spaces which carry a singular lower Ricci bound, and thus,
thanks to our main theorem, satisfy the RCD(K,N) condition. The fourth
section is devoted to reformulating some analytic and geometric results
about RCD(K,N) spaces in the setting of stratified spaces with a singular
lower Ricci bound, as an application of our main theorem. It also includes
the proof of Corollary B. The last section contains the proof of the main
theorem.
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1. Preliminaries on stratified spaces

1.1. Definition of compact stratified spaces and iterated edge
metrics

1.1.1. Definition and differential properties

The topological definition of a stratified space can be given by induction
with respect to a quantity called depth of the space. For the sake of sim-
plicity, we present here a definition by induction on the dimension. In the
definition and in the following we will use truncated cones. A truncated
cone over a metric space Z is the quotient space ([0, 1] × Z)/∼ with the
equivalence relation (0, z1) ∼ (0, z2) for all z1, z2 ∈ Z. If the interval is not
[0, 1] but [0, δ) for some δ > 0 we will write C[0,δ)(Z).

Definition 1.1. — A one-dimensional compact stratified space is sim-
ply a connected compact differentiable manifold of dimension one. For n
larger than one, assume that we have defined (n− 1) dimensional compact
stratified spaces. Then, an n-dimensional stratified space is a connected
compact topological space X such that the following properties hold:

(a) There exists a decomposition of X in strata

X =
⊔n

j=0
Σj ,

where Σ0 is a finite set of points, and Σj are smooth, possibly open,
manifolds of dimension j ∈ {1, . . . , n}. Each Σj is called a stratum.
We assume X is without boundary, namely Σn−1 = ∅. The closure
of Σj is required to satisfy

(1.1) Σj ⊂
⋃
l6j

Σl.

We further define the regular set Xreg as the stratum Σn of highest
dimension and the singular set Σ as its complement, namely Σ =⋃n−2
j=0 Σj . The strata of dimension j 6 (n − 2) are called singular

strata. Thanks to (1.1) Σ is a closed set, thus the regular set Xreg

is an open and dense subset of X.
(b) Each connected component Σ̃j of the singular stratum Σj of dimen-

sion j 6 (n− 2) admits a neighbourhood Uj homeomorphic to the
total space of a bundle of truncated cones over Σ̃j . More precisely,
there exists a retraction

πj : Uj → Σ̃j ,
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and a compact stratified space Zj of dimension (n − j − 1) such
that πj is a cone bundle whose fibre is a truncated cone over Zj .
We set ρj : Uj → [0, 1] the radial function where ρj(x) stands for
the radial factor in the conical fiber π−1

j ({x}). The stratified space
Zj is called the link of the stratum.

We are interested in studying smoothly stratified spaces. This means that
the cone bundle given in the definition is assumed to satisfy a smoothness
property that we now describe. Indeed, we have a notion of local chart in a
neighbourhood of a singular point and such chart is smooth on the regular
subset of the neighbourhood. More precisely, for each x ∈ Σj there exists
a relatively open ball Bj(x) ⊂ Σj and a homeomorphism ϕx such that:

ϕx : Bj(x)× C[0,δx)(Zj) −→Wx := π−1
j (Bj(x)),

satisfies πj ◦ ϕx = p1 where δx > 0, and p1 is the projection on the first
factor of the product Bj(x)×C[0,δx)(Zj). Moreover, ϕx restricts to a smooth
diffeomorphism on the regular sets, that is from (Bj(x) × C[0,δx)(Zregj )) \
(Bj(x)× {0}) onto the regular subset Wx ∩Xreg of Wx.

Remark 1.2. — First examples of stratified spaces are manifolds with
isolated conical singularities and orbifolds. In this second case, the links
are quotients of the sphere by a finite subgroup of O(n), acting freely on
Rn \ {0}. Note that not all stratified spaces are necessarily orbifolds.

Remark 1.3. — To have a better picture of the local geometry, let us
point out the case of a stratum Σn−2 of minimal codimension: each point
of Σn−2 has a neighbourhood which is homeomorphic to the product of
a ball in Rn−2 and a two-dimensional truncated cone. There is only one
possibility for the link of Σn−2: since it has to be a one-dimensional compact
stratified space, it is a circle S1.

1.1.2. Iterated edge metric

We are going to define a class of Riemannian metrics on a stratified space:
iterated edge metrics. Such metrics are proven to exist in [3]. We briefly
sketch the inductive construction of an iterated edge metric. Recall that
in dimension one a stratified space is a standard smooth manifold; in this
case an iterated edge metric is nothing but a smooth Riemannian metric.
Assume that we have constructed an admissible iterated edge metric on
compact stratified spaces of dimension k 6 (n−1) and consider a stratified
space Xn. In order to define an iterated edge metric, we first set a model
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metric on Uj , the neighbourhood of a connected component of the singular
stratum Σj introduced in the previous paragraph.
Consider kj a symmetric 2-tensor on ∂Uj = ρ−1

j (1) which restricts to an
admissible metric on each fibre of the cone bundle πj and vanishes on a j-
dimensional subspace. Such tensor exists because the link Zj is a stratified
space of dimension smaller than n. We define the model metric on Uj as
follows:

g0,j = π∗jh+ dρ2
j + ρ2

jkj ,

where h is a smooth Riemannian metric on Σj . Observe that, in terms of
the local coordinates given by a chart ϕx around x ∈ Σj , if (y, ρj , z) are
the coordinates of a point in Uj with y in Rj and z in Zj , h only depends
on y, while k depends on y and z.

Definition 1.4 (Iterated edge metric). — Let X be a stratified space
with strata Σj and links Zj ; let g0,j be the model metric defined above.
A smooth Riemannian metric g on the regular set Xreg is said to be an
iterated edge metric if there exist constants α,Λ > 0 such that for each j
and for each x ∈ Σj we have:

(1.2) |ϕ∗xg − g0,j | 6 Λrα, on Bj(x)× C(0,r)(Zreg
j ),

for any r < δx (where δx and the local chart ϕx are defined as above and
| · | refers to the norm on tensors induced by g0,j).

Remark 1.5. — When we consider a stratum Σn−2 of codimension 2, the
link is a circle S1, and therefore the model metric around x ∈ Σn−2 has the
following form:

g0,n−2 = π∗n−2h+ dρ2
n−2 + ρ2

n−2(a2
xdθ2),

where a2
xdθ2 is a metric on S1, for ax ∈ (0,+∞). We refer to αx = ax ·2π as

the angle of Σn−2 at x, since αx is the angle of the exact cone (C(S1),dρ2 +
a2
xρ

2dθ2). Note that αx may depend on x, and it can be smaller or larger
than 2π. This will play a crucial role in studying lower curvature bounds.

1.2. Stratified space viewed as Metric Measure Space

In this part, we introduce a distance and a measure on a compact strat-
ified space equipped with an iterated edge metric. To this aim, we shall
follow and use properties from the book [15].
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1.2.1. Distance on a stratified space

Definition 1.6 (Length structure). — If g is an iterated edge metric
for X, one introduces the associated length structure as follows. A contin-
uous curve γ : [a, b] → X is said to be admissible if the image γ([a, b]) is
contained in Xreg up to finitely many points; we further assume γ to be
C1 on the complement of this finite set. We then define the length of such
a curve as

Lg(γ) =
ˆ b

a

|γ̇(t)|dt.

Consequently, we define the distance between two points x, y ∈ X as fol-
lows:

dg(x, y) = inf
{

Lg(γ)
∣∣ γ : [a, b]→X admissible curve s.t. γ(a)=x, γ(b)=y

}
.

It is rather straightforward to check that the above length structure
meets the hypotheses described in [15, Chapter 2] which ensures that dg is
indeed a distance. We shall also use the following result:

Lemma 1.7. — Let (X, g) be a compact stratified space of dimension
n endowed with the iterated edge metric g. Let γ : [0, 1] → X be an
admissible curve. For any ε > 0, there exists an admissible curve γε with
the same endpoints as γ and such that γε((0, 1)) is contained in the regular
set Xreg. Moreover

Lg(γε) 6 Lg(γ) + ε.

More details about the length structure, including a proof of the above
Lemma, can be found in the appendix.

As proved in [15, Chapter 2], the length structure induced by dg gives rise
to a distance d̂ which coincides with dg. This fact allows us to consider the
larger set of rectifiable curves (where the length is intended as the standard
one on a metric space). Note also that according to the above lemma, the
distance dg(x, y) is the infimum of lengths of admissible curves whose range
is in Xreg except maybe the endpoints.

Consequently, (X, dg) is a compact length space, thus Ascoli–Arzela’s
theorem implies it is a geodesic space.

1.2.2. Tangent cones and geometry of small geodesic balls

The local geometry of a singular point x ∈ Σ is also well-understood.
Let us start with a result on tangent cones, namely the Gromov–Hausdorff
limits of the pointed metric spaces (X, ε−1dg, x) as ε goes to zero.
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Lemma 1.8. — Let x be a point in (X, dg). Then there exists a unique
tangent cone TxX at x. Moreover, when x ∈ Σj , this cone is isometric to
Rj×C(Zj) equipped with the distance induced by the product Riemannian
metric dx2 + dρ2 + ρ2kj .The convergence is C∞loc on the regular set Xreg.

Rescaling the distance by a factor 1/ε around a point x amounts to
rescale the iterated edge metric by a factor 1/ε2. By definition of this
metric around a singular point, it is then not difficult to show existence
and uniqueness of the tangent cone at any such point x of a stratified
space (see for example [1, Section 2.1]).

Remark 1.9. — By definition of an iterated edge metric, the tangent cone
at a regular point is isometric to Euclidean space Rn.

For x ∈ Σj , a change of variables proves that the tangent cone at a
singular point is isometric to the metric cone (C(Sx), dC) where Sx is the
(j − 1)-fold spherical suspension of the link Zj :[

0, π2

]
× Sj−1 × Zj

endowed on its regular set with the double warped product metric:

hx = dϕ2 + cos2 ϕgSj−1 + sin2 ϕkj ,

and dC is the cone distance induced by the Riemannian cone metric dr2 +
r2hx on the regular set of C(Sx). We refer to Sx as the tangent sphere at
x. Note that Sx is a compact stratified space of dimension (n − 1). Note
also that 1.2 implies

(1.3) |ϕ∗xg − g0,j | 6 Λrα, on B0,j(x, r) ∩Xreg ⊂ Bj(x)× C(0,r)(Zreg
j )

the open ball of radius r w.r.t. to the model metric g0,j centered at x. Note
that this ball is homeomorphic to C[0,r)(Sx).

The tangent sphere allows us to give a different and useful description
of geodesic balls around a point; the idea is that a geodesic ball around a
singular point is “not far” from being a cone over its tangent sphere. We
refer to [2, Section 2.2] for proofs of the following properties.

Namely, for any x ∈ Σ, there exists a sufficiently small radius εx, a
positive constant κ and an open set Ωx satisfying:

• the geodesic ball B(x, εx) is contained in Ωx;
• Ωx is homeomorphic to the truncated cone C[0,κεx)(Sx), and the

homeomorphism ψx sends the regular part of Ωx to the regular set
of C[0,κεx)(Sx);
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• on the regular part of the ball B(x, εx)∩Xreg we control the differ-
ence between g and the exact cone metric gC = dr2 + r2hx:

(1.4) |ψ∗xg − (dr2 + r2hx)| 6 Λεαx ,

where Λ is a positive constant, and α is the same exponent appear-
ing in the definition of the iterated edge metric g.

This implies a similar estimate for the distance functions. More precisely,
on the cone over (Sx, hx), let us consider the exact cone distance:

dC((t, y), (s, z)) =
√
t2 + s2 − 2st cos(dhx(y, z) ∧ π),

where (t, y), (s, z) belong to C(Sx) and a ∧ π is the minimum between a

and π.
Now, given x ∈ Σ and a radius 0 < ε < εx, we have, for any point y in

B(x, ε) with coordinates (r, z) in C[0,κεx)(Sx), the estimate:

(1.5) |dg(x, y)− dC(0, (r, z))| 6 Λεα+1.

In other terms, the distance function from a point x in the singular set is
not far from being the exact cone distance in C(Sx) in small geodesic balls
centred at x. However, it is still quite difficult to say anything about the
local behaviour of geodesic at singularities.

Observe that, thanks to the compactness of the stratified space, we can
choose a uniform ε0 such that for any x ∈ X the ball B(x, ε0) satisfies the
previous properties.

1.2.3. Measure on a stratified space

We end this part with the definition of the volume measure on X. We
then show that the volume shares properties with the standard Riemannian
volume of a smooth Riemannian manifold.

Definition 1.10 (Volume measure). — The volume measure vg of a
compact stratified space endowed with an iterated edge metric g, is the
Riemannian measure on Xreg induced by the restriction of g to this set.
It is denoted as vg while the volume of a measurable set A is denoted by
Volg(A).

Note that the singular set has measure zero: Volg(Σ) = 0.
We start by observing a local property for the volume measure. Consider

a point x ∈ X and the radius ε0 > 0 defined as above, so that the geodesic
ball B(x, ε0) is contained in an open set homeomorphic to a truncated
cone over the tangent sphere Sx. Denote by VolC the volume measure

ANNALES DE L’INSTITUT FOURIER



STRATIFIED SPACES AND SYNTHETIC RICCI CURVATURE BOUNDS 135

associated to the cone metric gC . Thanks to (1.4), for any regular point
y ∈ C(0,κε0)(Sreg

x ) and for any vector v such that gC(v, v) = 1 we obtain:

(1− Λεα0 ) 6 ψ∗xg(v, v) 6 (1 + Λεα0 ).

By choosing an orthonormal basis for the cone metric gC which is orthog-
onal for ψ∗xg, the previous implies the following inequality for the volume
forms:

(1− Λεα0 )n2 dvC 6 dvψ∗xg 6 (1 + Λεα0 )n2 dvC .
As a consequence, and thanks to the fact that the singular sets have null
measure, for any measurable set U in B(x, ε0) we have:

(1.6) (1− Λεα0 )n2 VolC(ψ−1
x (U)) 6 Volg(U) 6 (1 + Λεα0 )n2 VolC(ψ−1

x (U)).

The volume measure on a geodesic ball is close to the volume measure
of a cone metric. This local property allows us to deduce that the vol-
ume measure of a compact stratified space is finite, n-Ahlfors regular and
doubling.

Lemma 1.11. — The volume measure vg of a compact stratified space
is finite.

Proof. — The proof is by induction on the dimension; it is clearly true for
n = 1. Assume that any stratified space of dimension k 6 (n− 1) is finite.
We can cover Xn by finitely many geodesic balls B(xi, ε0) for a uniform
ε0 such that 1.6 holds on B(xi, ε0). In particular, the volume of B(xi, ε0)
with respect to g is smaller than the volume of the truncated cone on the
tangent sphere Sxi with respect to the cone metric gC . If xi belongs to the
regular set, Sxi is a sphere of dimension (n−1) and gC is the round metric
on an n-dimensional Euclidean ball. As a consequence, Volg(B(xi, ε0)) is
finite. If xi is a singular point, then Sxi is a stratified space of dimension
(n−1), which has finite volume by the induction hypothesis. Therefore the
truncated cone over Sxi has finite volume with respect to gC , and again
Volg(B(xi, ε0)) is finite. We can then cover Xn by a finite number of balls
of finite volume, thus Volg(X) is finite. �

Proposition 1.12. — The measure vg is n-Ahlfors regular: there exists
a positive constant C such that for any x ∈ X and for any 0 < r <

diam(X)/2, the measure of the ball B(x, r) is bounded as follows:

C−1rn 6 Volg(B(x, r)) 6 Crn.

As a consequence, the measure vg is doubling: there exists a constant C1
such that for any x ∈ X and for any 0 < r < diam(X)/2

Volg(B(x, 2r)) 6 C1 Volg(B(x, r)).
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Proof. — The second property is an immediate consequence of the
Ahlfors regularity. Using the compactness of X, it suffices to prove, for
all x ∈ X, the bounds

(1.7) C(x)−1rn 6 Volg(B(x, r)) 6 C(x)rn

for all 0 < r < R(x) where R(x), C(x) > 0 may depend on x. Indeed, the
compactness of X and the property Volg(X) < +∞ allow us to remove the
dependance in x from the constant C(x) and to replace R(x) by diam(X).
In order to prove (1.7) we only have to consider the case of a singular

point x ∈ Σ. Fix ε0 as defined above and consider a geodesic ball B(x, ε),
for some ε < ε0, on which the three estimates (1.4), (1.5) and (1.6) hold.
Denote by U the image of B(x, ε) in the truncated cone C[0,κε)(Sx) by the
homeomorphism ψx. Thanks to the estimate on the distance (1.5), U must
be contained in a geodesic ball with respect to the metric gC centered at the
tip of the cone, whose radius is not far from ε. More precisely, for δ = Λεα0 ,
U satisfies:

C[0,(1−δ)ε)(Sx) ⊂ U ⊂ C[0,(1+δ)ε)(Sx).

Indeed, geodesic balls centered at the tip of the cone are truncated cone as
well. Thanks to the estimate on the volume measure (1.6), we obtain for
any 0 < ε 6 ε0:

Volhx(Sx)(1− δ)nεn 6 Volg(B(x, ε)) 6 Volhx(Sx)(1 + δ)nεn.

This last inequality allows us to conclude, since the volume of Sx is
finite. �

Remark 1.13. — Note that, by the previous discussion, the measure vg
induced by the iterated edge metric g coincides with the Hausdorff measure
induced by the distance dg.

Remark 1.14. — Consider the pointed Gromov–Hausdorff convergence
of (X, ε−1dg, x) as ε goes to 0 to the tangent cone (C(Sx), dC , o), where
o is the tip of the cone. We know that, on the regular sets, we have C∞loc
convergence of the iterated edge metric ε−2g to the cone metric gC =
dr2 + r2hx. Therefore, the measure vg converges to the cone measure vC
associated to gC , which in turns coincides with the Hausdorff cone measure
mC = rn−1dr ⊗Hn−1

Sx
on C(Sx).

As a consequence, the sequence (X, ε−1dg, vg, x) converges in pointed
measured Gromov–Hausdorff sense to (C(Sx), dC ,mC , o).
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1.3. Analysis on stratified spaces

We define the Sobolev space W 1,2(X) on a compact stratified space
(X, dg, vg) as the completion of Lipschitz functions on X with respect to
the usual norm of W 1,2. More precisely, for a Lipschitz function u, the
gradient ∇u is defined almost everywhere on X, and therefore its norm in
W 1,2(X) is given by:

‖u‖21,2 =
ˆ
X

(u2 + |∇u|2)dvg.

It is possible to show that Lipschitz functions with compact support on the
regular set Lip0(Xreg), as well as C∞0 (Xreg) smooth functions with compact
support on Xreg, are dense in W 1,2(X) (see [42, Chapter 1] for a standard
proof). The Sobolev space W 1,2(X) is clearly an Hilbert space. Moreover
the usual Sobolev embeddings holding for compact smooth manifolds, also
hold in the setting of compact stratified spaces, as proven in [1].
We define the Dirichlet energy as

E(u) =
ˆ
X

|∇u|2dvg, for u ∈ C∞0 (Xreg).

Thanks to the density of C∞0 (Xreg), we can then extend E to the whole
W 1,2(X). The Laplacian ∆g associated to g is then the positive self-adjoint
operator obtained as the Friedrichs extension of the operator generating the
quadratic form E . The integration by parts formula holdsˆ

X

v∆gudvg =
ˆ
X

(∇u,∇v)gdvg.

It is proven in [1] that the spectrum of the Laplacian is discrete and non-
decreasing:

0 = λ0 < λ1 6 λ2 6 · · · 6 λn → +∞.
Moreover, in [2] the authors showed a local (2, 2)-Poincaré inequality: there
exists constants a > 1, C > 0 and ρ0 > 0 such that for any x ∈ X and for
any ρ < ρ0, if u ∈W 1,2(B(x, aρ)) thenˆ

B(x,ρ)
|u− uB(x,ρ)|2dvg 6 C

ˆ
B(x,aρ)

|∇u|2dvg,

where uB(x,ρ) = Volg(B(x, ρ))−1´
B(x,ρ)udvg is the average of u over B(x, ρ).

In the following we will need the so-called “Sobolev-to-Lipschitz prop-
erty” which, roughly speaking, means that a Sobolev function with bounded
gradient admits a Lipschitz representative (see Definition 2.3). This holds
on compact stratified spaces thanks to Lemma 1.7. The precise statement is
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Lemma 1.15. — Let u ∈W 1,2(X) be a function with bounded gradient,
∇u ∈ L2(X) ∩ L∞(X). Then u has a Lipschitz representative.

Proof. — When we restrict u to Xreg, u has a bounded gradient de-
fined almost everywhere. Consider two points x 6= y in Xreg. Thanks to
Lemma 1.7, for any ε > 0 there exists an admissible curve γε : [0, 1]→ Xreg

which connects x and y such that

Lg(γε) 6 (1 + ε)dg(x, y).

Therefore, since γε([0, 1]) is compact, it can be covered by finitely many
geodesically convex balls diffeomorphic to open Euclidean subsets. On such
a ball, u is locally Lipschitz with Lipchitz constant at most ‖∇u‖∞. We
infer from the fundamental theorem of calculus applied to u ◦ γ:

|u(x)− u(y)| 6 ‖∇u‖∞(1 + ε)dg(x, y).

By letting ε go to zero, we obtain that u is a Lipschitz continuous function
on Xreg with Lipschitz constant smaller than or equal to K = ‖∇u‖∞. This
implies u is uniformly continuous on Xreg; since the regular set is dense in
X, u admits a unique Lipschitz continuous extension ū defined on the whole
X, with u = ū almost everywhere and the same Lipschitz constant. �

Remark 1.16. — We can consider another possible metric structure on
the stratified space, by defining the distance associated to the Dirichlet
energy as follows:

dE(x, y) = sup{|f(x)− f(y)|; f ∈W 1,2(X), ‖∇f‖∞ 6 1}.

Thanks to the previous result, we know that Sobolev functions with
bounded gradient are Lipschitz functions, and ‖∇f‖∞ 6 1 implies they
have Lipschitz constant at most one. As a consequence, for any f as in
the definition and for any x, y ∈ X we have |f(x) − f(y)| 6 dg(x, y),
which implies dE(x, y) 6 dg(x, y). Moreover, note that for any x fixed,
f(y) = dg(x, y) is clearly a Lipschitz function of Lipschitz constant one, be-
longing toW 1,2(X). Therefore for any x, y ∈ X we have dE(x, y) > dg(x, y).
Then the two distances coincides.

1.3.1. Ultracontractivity

In the proof of Theorem A we will use some properties of the heat semi-
group that we recall here. Let X be a compact stratified space, and let
g be an iterated edge metric. By definition, E is also a strongly regular
Dirichlet form. Let (Pt)t>0 denote the associated heat semi-group. E is
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strongly local, admits a local (2, 2)-Poincaré inequality, and the measure vg
satisfies a doubling property. Moreover, closed balls w.r.t. dE are compact.
Therefore, we can apply results from [52, 53, 54] and, in particular, the
following lemma holds.

Lemma 1.17. — Pt is L1 → L∞-ultracontractive. More precisely, for
every t ∈ (0,∞) there exists a constant C(t) > 0 such that

‖Pt‖L1(Volg)→L∞(Volg) 6 C(t).

Proof of the Lemma. — The assumptions imply a uniform bound C̃(t) >
0 on the associated heat kernel (x, y) 7→ pt(x, y) by [53, Theorem 0.2] or
by [54, Corollary 4.2]. Then, we can first deduce L1→Lp-ultra-contractivity
for some p > 1 (for instance, compare with [33, Chapter 14.1]), and this
property implies our claim (for instance, see again [33, Chapter 14.1] or [8,
Theorem 6.4]). �

2. A minimal introduction to analysis on Metric Measure
Spaces

2.1. Calculus on metric measure spaces

In this part, we provide a minimal introduction on the analytical tools
used in the theory of RCD-spaces. We follow closely the approach of Am-
brosio, Gigli and Savaré [6, 7, 8, 9].
Throughout this section (X, d) is a complete and separable metric space,

and let m be a locally finite Borel measure. The triple (X, d,m) is then
called a metric measure space. Moreover, we assume from now on that the
so-called exponential volume growth condition holds

∃ x0 ∈ X, ∃ C > 0 :
ˆ
X

e−Cd(x,x0)2
dm <∞.(2.1)

2.1.1. Cheeger energy and Sobolev space

As for a stratified space we denote by Lip(X) the set of Lipschitz func-
tions on (X, d), and for f ∈ Lip(X) we define the local slope or the local
Lipschitz constant Lip(f) as

x 7→ Lip(f)(x) = lim sup
y→x

|f(x)− f(y)|
d(x, y) .
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Lip1(X) denotes the set of Lipschitz functions with local slope bounded
from above by 1. Then, the Cheeger energy of (X, d,m) is defined via

Ch : L2(m)→ [0,∞], Ch(f) = 1
2 lim inf

Lip(X)3fn
L2
→f

ˆ
X

Lip(f)2dm.

The Sobolev space D(Ch) of (X, d,m) is given by

D(Ch) =
{
f ∈ L2(m) : Ch(f) <∞

}
and equipped with the norm ‖f‖2D(Ch) = ‖f‖22 + 2 Ch(f) where in this
context ‖f‖2 denotes the Lebesgue L2-norm w.r.t. m. Note that D(Ch)
with ‖ · ‖D(Ch) is not a Hilbert space in general. For instance, a Banach
space V that is not a Hilbert space, or more general any Finsler manifold
that is not Riemannian will generate a space of Sobolev functions that is
not a Hilbert space as well.

2.1.2. Minimal relaxed and weak upper gradient

A function g ∈ L2(m) is called a relaxed gradient of f ∈ L2(m) if there
exists a sequence of Lipschitz functions (fn)n∈N such that (fn) converges to
f in L2(m), and there exists g̃ ∈ L2(m) such that Lip(fn) weakly converges
to g̃ in L2(m) and g > g̃. We call g the minimal relaxed gradient of f if it is
minimal w.r.t. the L2 norm amongst all relaxed gradients. We write |∇f |∗
for the minimal relaxed gradient of f . Any f ∈ D(Ch) admits a minimal
relaxed gradient, and Ch(f) = 1

2
´
|∇f |2∗dm.

An alternative approach is to introduce so-called weak upper gradients
for an L2-function f . Then one can define uniquely the so-called minimal
weak upper gradient |∇f |w. We will omit any details about the definition.
However, let us mention this notion is inspired by Cheeger’s work [23] where
he defined the notion of (minimal) generalised upper gradient |∇f |w. The
author proved [23, Theorem 5.1] that on a complete length space (X, d,m)
that is doubling and which supports a local (2, 2)-Poincaré inequality,

(2.2) |∇f |w = Lip(f)

holds m-a.e. space where f is any locally Lipschitz function on X.
We have seen in Section 1 that a stratified space meets these assumptions,

thus Cheeger’s result applies in our setting. Moreover, by combining [7,
Theorem 6.2] with earlier work by Shanmugalingam [49] (see [7] for more
details), it can be proved that

(2.3) |∇f |∗ = |∇f |w m-a.e. .
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This result holds on any complete separable metric measure space sat-
isfying some mild assumption on m (see [7]). This set of spaces comprises
compact stratified spaces and thus the combination of (2.2) and (2.3) gives
a proof of

(2.4) |∇f |∗ = Lip(f) m-a.e.

for any locally Lipschitz function f on X.
Because none of these results is elementary, we provide another short

proof which applies in our particular setting in the appendix, see Proposi-
tion A.5.

Remark 2.1. — For an L2-integrable Lipschitz function the local Lips-
chitz constant can be strictly bigger than the relaxed gradient. For instance,
consider Rn equipped with a measure that is the sum of finitely many Dirac
measures. Then, the Cheeger energy for any Lipschitz function on Rn is 0.

2.1.3. Infinitesimally Hilbertian metric measure spaces

If D(Ch) is in fact a Hilbert space, we say that (X, d,m) is infinitesimally
Hilbertian. In this case we can define a pointwise inner product between
minimal relaxed gradients by

(f, g) ∈ D(Ch)2 7→ 〈∇f,∇g〉 := 1
4 |∇(f + g)|2∗ −

1
4 |∇(f − g)|2∗.

We say f ∈ D(Ch) is in the domain of the Laplace operator if there exists
g ∈ L2(m) such that for every h ∈ D(Ch) we haveˆ

〈∇f,∇h〉dm = −
ˆ
hgdm.

We say f ∈ D(∆). If f ∈ D(∆), then g ∈ L2(m) as above is uniquely deter-
mined, and we write g = ∆f . Note that the definition of D(∆) intrinsically
sets Neumann boundary condition. D(∆) is equipped with the so-called
operator norm ‖f‖2D(∆) = ‖f‖22 + ‖∆f‖22. We also define

DD(Ch)(∆) = {f ∈ D(∆) : ∆f ∈ D(Ch)(X)}

and similar DL∞(m)(∆).

Remark 2.2. — We emphasize that in the context of RCD spaces the
sign convention for ∆ differs from the one that we chose for the Laplace
operator ∆g on stratified spaces.

TOME 71 (2021), FASCICULE 1



142 J. BERTRAND, C. KETTERER, I. MONDELLO & T. RICHARD

2.1.4. Bakry–Émery curvature-dimension condition

Another way to define curvature-dimension conditions was introduced by
D. Bakry (see for example [14]) using the so-called Γ-calculus, based on the
Bochner inequality on manifolds with a lower Ricci bound. In the following
we mainly refer to [9]. Let (X, d,m) be a metric measure space that is
infinitesimally Hilbertian. For f ∈ DD(Ch)(∆) and φ ∈ DL∞(∆) ∩ L∞(m)
we define the carré du champ operator as

Γ2(f ;φ) =
ˆ 1

2 |∇f |
2
∗∆φ dm−

ˆ
〈∇f,∇∆f〉φdm.

Definition 2.3 (Bakry–Émery condition). — We say that (X, d,m)
satisfies the Bakry–Émery condition BE(K,N) for K ∈ R and N ∈ (0,∞]
if it satisfies the weak Bochner inequality

Γ2(f ;φ) > 1
N

ˆ
(∆f)2φ dm +K

ˆ
|∇f |2∗φ dm.

for any f ∈ DD(Ch)(∆) and any test function φ ∈ DL∞(∆)∩L∞(m), φ > 0.

Under some mild assumptions, the Bakry–Émery condition is equivalent
to several notions of metric measure space (mms) with “Ricci curvature
bounded below”. This subject has received a lot of attention over the last
fifteen years with the introduction of several notions of curvature-dimension
conditions on mms. Among them, we distinguish the RCD(K,N) spaces
and RCD∗(K,N) spaces, [8, 29, 32]. These two notions are actually equiva-
lent when the measure of the space is finite, as recently proved by Cavalletti
and Milman [17]. In order to state the theorem, we first define:

Definition 2.4. — We say a metric measure space satisfies the Sobolev-
to-Lipschitz property if

{f ∈ D(Ch) : |∇f |∗ 6 1 m-a.e.} ⊂ Lip1(X).

Theorem 2.5 ([11, 29]). — Let (X, d,m) be a metric measure space
satisfying 2.1. Then, the condition RCD(K,N) for K ∈ R and N > 1
holds if and only if (X, d,m) is infinitesimally Hilbertian, it satisfies the
Sobolev-to-Lipschitz property and it satisfies the Bakry–Émery condition
BE(K,N).

2.1.5. Cheeger versus Dirichlet energy

Our strategy to prove Theorem A consists in applying the previous theo-
rem to a compact stratified space (X, dg, vg) endowed with the structure of
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a metric measure space introduced in the first section. The assumption 2.1
is clearly satisfied since the volume of a compact stratified space is finite.
In order to be able to apply Theorem 2.5, we need the Sobolev space as
defined in the previous section to agree with the domain of the Cheeger
energy, and the different notions of gradients to be equivalent for Sobolev
functions.
We have proven that for any locally Lipschitz function u, |∇u|∗ = Lip(u)

(2.4). By density of Lipschitz functions in the domains of both the Dirichlet
energy and the Cheeger energy, such domains coincide:

W 1,2(X) = D(Ch).

As a consequence, since W 1,2(X) is a Hilbert space, the same is true for
D(Ch): any compact stratified space is infinitesimally Hilbertian.

In particular, for any u ∈W 1,2(X) we have

(2.5) 2 Ch(u) =
ˆ
X

|∇u|2∗dvg =
ˆ
X

|∇u|2gdvg = E(u),

where | · |g is the usual norm with respect to the iterated edge metric g.
The density of the Lipschitz functions together with (2.5) also guarantees
that for any Sobolev function u we have |∇u|g = |∇u|∗ almost everywhere.
Therefore, the fact that a Sobolev function has a Lipschitz representative,
proven in Lemma 1.15, also proves that the Sobolev-to-Lipschitz property,
as stated in Definition 2.4, holds on compact stratified spaces.
Clearly, the Laplace operator ∆ in the sense of a metric measure space

is the Laplace operator with Neumann boundary condition in the sense of
stratified spaces up to a minus sign: ∆ = −∆g.
Therefore, we can apply Theorem 2.5: more precisely, establishing the

Bakry–Émery curvature dimension condition BE(K,n) for the Dirichlet
energy E and its Laplace operator will imply the Riemannian curvature-
dimension condition RCD(K,n) for a compact stratified space (X, dg, vg)
with a singular lower Ricci curvature bound.

3. Examples of stratified spaces with a singular Ricci
lower bound

In this section we recall and make more precise the definition of a singular
lower Ricci bound presented in the introduction; in the following we also
illustrate some examples of stratified spaces with a singular Ricci lower
bound.
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Definition 3.1 (Singular Ricci lower bound). — Let X be a compact
stratified space of dimension n endowed with an iterated edge metric g. Let
K∈R. We say that ghas singular Ricci curvature bounded frombelowbyKif

(i) Ricg > K on the regular set Xreg,
(ii) for every x ∈ Σn−2 we have αx 6 2π.

Lemma 1.1 in [43] proves that if the Ricci tensor of g is bounded below
on the regular set of X, then the regular set of each tangent cone C(Sx)
carries a metric with non-negative Ricci tensor. As a consequence, for each
link (Zj , kj) we have Rickj > (j′ − 1) on Zreg

j , where j′ = n− j − 1 is the
dimension of the link. Observe that when the codimension of the strata is
strictly larger than 2, the previous implies that the link carries a metric with
strictly positive Ricci tensor. Moreover, when we consider the regular set
of C(Zj), that is C(Zreg

j ) \ {0}, this is an open manifold with non-negative
Ricci tensor, as observed by J. Cheeger and M. Taylor (see [22, 24]).
As for the stratum of codimension 2, if we only assume that g has Ricci

tensor bounded below, we only get that the Ricci tensor on S1 is non-
negative, and we cannot deduce any positivity for the curvature of the
two-dimensional cone C(S1). In order to have a bound by below for the
curvature, in the sense of Alexandrov, or with respect to the curvature-
dimension condition CD(0, 2) (see [13]), we need to assume that the di-
ameter of (S1, a2

xdθ2) is less than or equal to π; equivalently the radius ax
need to be smaller than or equal to one, and the angle αx is less than or
equal to 2π. Since the angle may depend on the point x ∈ Σn−2, we need
to assume condition (ii) for all points of the stratum of codimension two.
We present some examples of stratified spaces carrying a metric with a

singular lower Ricci bound. Thanks to Theorem A, all of these examples
are RCD(K,N) spaces. Most of them are previously unknown examples
and some of them recover the known examples of orbifolds and spherical
suspension over smooth manifolds with a Ricci lower bound.
We point out that, except for the case of orbifolds, all the examples in

the following can be constructed in order to have a Ricci lower bound on
the regular set and angles αx along the stratum of codimension two larger
than 2π. For such examples, having a lower Ricci bound on the regular set
does not suffice to satisfy the RCD(K,N) condition.

Manifolds with isolated conical singularities. — A compact surface with
isolated conical singularities of angle less than 2π and non-negative sec-
tional curvature is known to be an Alexandrov space. It is clearly a simple
example of a stratified space with Ricci tensor bounded below as in Defini-
tion 3.1. More generally, if we add isolated conical singularities of angle less
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than 2π to a compact smooth manifold with Ricci tensor bounded below,
we obtain a stratified space satisfying 3.1.

A construction of a singular stratum. — Consider a sphere S3 with round
metric g0, and a closed circle c in S3. By using Fermi coordinates in a
tubular neighbourhood Uε of c of size ε, it is possible to write the metric
in Uε as a perturbation of the following product metric:

dr2 + r2dϕ2 + a2dθ2,

where a is the radius of the circle. More precisely, there exists a positive
constant Λ such that:

|g0 − (dr2 + r2dϕ2 + a2dθ2)| 6 Λrγ ,

where γ = 1 if c is not totally geodesic, γ = 2 otherwise. We refer to the
appendix for the details. Now, we can choose α ∈ [0, 2π] and modify the
metric in Uε so that the new metric does not change outside of Uε and it
is a perturbation of the singular metric:

gα = dr2 +
( α

2π

)2
r2dϕ2 + a2dθ2;

This makes the circle c a singular stratum of codimension two and angle
equal to α. Moreover, this construction leaves the Ricci tensor of g0 bounded
below away from c; therefore we constructed a simple stratified space with
Ricci tensor bounded below as in Definition 3.1. The same construction
can be done along a codimension two submanifold in any compact smooth
manifold with Ricci tensor bounded below.

Singular space associated to a static triple. — A static triple is a triple
(Mn, g, V ) where (Mn, g) is a complete manifold with boundary ∂M and V
a static potential, that is a non trivial solution V ∈ C∞(M) to the equation

∇2V − (∆gV )g − V Ricg = 0.

Static triples have been studied in general relativity and in differential
geometry, in the context of prescribing scalar curvature; in the following
we mainly refer to [12]. A static triple always has constant scalar curvature,
which can be renormalized to be equal to εn(n−1) with ε ∈ {+1, 0,−1}, the
boundary ∂M is totally geodesic and |∇V | is constant on each connected
component of ∂M ([12, Lemma 3]).
Starting from a static triple, it is possible to construct an associated

singular space, which turns out to be an Einstein stratified space. This
construction has long been known in the setting of general relativity (for
example [31]); we refer here to [12, Section 6] for the precise details and
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only recall the main features of the singular space. For any static triple
(Mn, g, V ) there exists a stratified space (Nn+1, h) with one singular stra-
tum Σ of codimension 2 which can be identified with ∂M , thus can be
disconnected. The regular set Xreg of (Nn+1, h) is isometric to the product
S1× (M \ ∂M) and the metric h on Xreg is Einstein with Rich = εnh. The
angles along each connected component of Σ are determined by the value of
|∇V |. Observe that the stratified space (Nn+1, h) is compact if and only if
(Mn, g) is compact; in this case, the static potential V can be renormalized
so that |∇V | 6 1 on each connected component of ∂M : this implies that
the angles along the stratum are smaller than 2π. As a consequence, in
the compact case (Nn+1, h) is a stratified space with Ricci tensor bounded
below in the sense of Definition 3.1.

Kähler–Einstein manifolds with a divisor. — In [34], T. Jeffres, R.
Mazzeo and Y. Rubinstein considered compact Khäler manifolds with a
smooth divisor D, carrying a metric with angle α ∈ (0, 2π] along D. The
divisor is a singularity of codimension two, and such manifolds belong to
the setting of stratified spaces.
The authors proved the existence of a Kähler–Einstein metric g onM \D,

whose asymptotic along D has angle β ∈ (0, 2π). Therefore, M endowed
with the Kähler–Einstein metric g is a stratified space with Ricci tensor
bounded below as in 3.1.
Note that the existence of a Kähler–Einstein metric with edge singularity

has been an important step towards the proof that any smooth K-stable
Fano manifold carries a Kähler–Einstein metric (see [25, 26, 27] and [57]).

Orbifolds. — Any compact Riemannian n-orbifold without boundary is a
stratified space (see [42]). If the regular set of the orbifold has Ricci tensor
bounded below, then the orbifold satisfies Definition 3.1. In fact, all the
links are quotients of a sphere Sk, for 1 6 k 6 (n− 1) by a finite group of
isometries; even in the case of the stratum of codimension two, and k = 1,
the link is a circle of diameter less than or equal to π, without any further
assumption. Theorem A applied to compact orbifolds without boundary
partially recovers Theorem 7.10 in [30]

Spherical suspension. — Consider a circle (S1, a2dθ2) of radius a smaller
than one, and the following spherical suspension:

Snα =
[
0, π2

]
× Sn−2 × S1

gα = dϕ2 + cos2(ϕ)gSn−2 +
( α

2π

)2
sin2 ϕdθ2,
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where gSn−2 is the round metric of the unit sphere Sn−2 and α = 2πa. Then
(Snα, gα) is a compact stratified space with singular set of codimension 2
and angle α 6 2π. Moreover, it is easy to check that gα is an Einstein
metric with Ricgα = (n − 1). Therefore (Snα, gα) is a compact stratified
space with Ricci tensor bounded below.
More generally, if we consider a compact smooth manifold (Mn, g) of di-

mension n> 2 and with Ricg > (n−1), the spherical suspension ([0, π]×M,

dt2 +sin2(t)g) is a compact stratified space satisfying Definition 3.1. There-
fore, Theorem A agrees with previous results of [13]. Moreover, the spherical
suspension of a compact stratified space satisfying Definition 3.1 is also a
compact stratified space with a singular Ricci lower bound.

4. Geometric consequences of the curvature-dimension
condition

Thanks to Theorem A we know that a compact stratified space (Xn, g)
with singular Ricci curvature bounded below by K is a RCD(K,n) metric
measure space. This allows us to apply to stratified spaces several geometric
results that are known in the setting of RCD(K,n) metric measure spaces
and of smooth Riemannian manifolds, but are new in the case of stratified
spaces. Moreover, the RCD(K,N) condition can be used to obtain a char-
acterization of compact stratified spaces with curvature bounded below in
the sense of Alexandrov.

4.1. Essential non-branching

The first consequence of the RCD(K,n) condition is that (Xn, g) is es-
sentially non-branching. A metric measure space (X, d,m) is said to be
essentially non-branching if for any two measures µ0, µ1 in the Wasser-
stein space P2(X,m), absolutely continuous with respect to m, any opti-
mal plan π between µ0 and µ1 is concentrated on a set of non-branching
geodesics. The fact that a RCD(K,∞) space is essentially non-branching
has been proven in [46]. Thus a stratified space with singular Ricci curva-
ture bounded below is essentially non-branching. We point out that essen-
tial non-branching does not exclude the existence of branching geodesics,
which may occur in the setting of stratified spaces. Nevertheless, examples
of branching RCD(K,N) spaces are not known.
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4.2. Bishop–Gromov

A direct consequence of the RCD(K,N) condition is the Bishop–Gromov
volume estimate. This has been proven for CD(K,N) spaces by K.-T.
Sturm in [56, Theorem 2.3]. Let ωn be the volume of the unit ball in the
Euclidean space and define:

vk(r) = nωn

ˆ r

0
sink(t)n−1dt,

that is the volume of a ball of radius r in the n-dimensional space form of
constant curvature k. Then the following holds:

Corollary 4.1 (Bishop–Gromov volume estimate). — Let (Xn, dg, vg)
be a stratified with singular Ricci curvature bounded below byK and n > 1.
Then for any 0 < r < R < diam(X) we have:

volg(B(x, r))
volg(B(x,R)) 6

vK/(n−1)(r)
vK/(n−1)(R) .

Observe that if x is a point in the regular set, the Bishop–Gromov volume
estimate holds for a sufficiently small radius due to the fact that the Ricci
tensor is bounded below on Xreg. The result is new when we consider a
point x in a singular stratum or when the radii are large.

4.3. Laplacian comparisons

We refer to N. Gigli’s proof of Laplace comparisons for CD(K,N) spaces,
in Theorem 5.14 and Corollary 5.15 of [32]. Note that both of these results
need the metric measure space (X, d,m) to be compact and q-infinitesimally
strictly convex for some real q. When (X, d,m) is infinitesimally Hilbertian,
it is 2-infinitesimally strictly convex, as proven in [8]; therefore, Laplace
comparisons as given in [32] hold in any compact RCD(K,N) space. We
point out that F. Cavalletti and A. Mondino [20] recently proved Lapla-
cian comparisons for the distance function removing the assumptions of
infinitesimal strict convexity and compactness of the space.
For the sake of completeness, we state the result in the setting of compact

stratified spaces for the distance function. As in the case of the Bishop–
Gromov volume estimate, the interest of the result is for the distance func-
tion to a point in the singular set or because the estimate also holds far
away from the base point.

We define the measure valued Laplacian as follows:
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Definition 4.2. — Let E ⊂ X be an open set in (Xn, g), µ a Radon
measure concentrated on E, and f a locally Lipschitz function on E. We
say that f has distributional Laplacian bounded from above by µ on E if
for any nonnegative ϕ ∈ Lip0(E), the following holds:ˆ

X

(∇f,∇ϕ)gdvg 6
ˆ
X

ϕdµ.

In this case, we write ∆gf 6 µ on E.

Corollary 4.3. — Let (Xn, g) be a compact stratified space with sin-
gular Ricci curvature bounded from below by k(n − 1) ∈ R. For x ∈ X,
let dx be the distance function from x, namely dx(y) = dg(x, y). Then the
following inequalities hold:

∆gdx6 (n−1)sin′k(dx)
sink(dx)dvg on X\{x}, ∆g

(
d2
x

2

)
6ndx

sin′k(dx)
sink(dx)dvg on X.

This clearly corresponds to the situation in the smooth setting.

4.4. Lévy–Gromov isoperimetric inequality

A classical and well known isoperimetric inequality for smooth manifolds
is the Lévy–Gromov isoperimetric inequality. Let (Mn, g) be a compact
smooth manifold with Ricci tensor bounded below by (n−1), and consider
a domain Ω in M with smooth boundary and volume

Volg(Ω) = β.

Denote by Bβ a geodesic ball in the standard sphere Sn with volume equal
to βVol(Sn). If equality

Volg(Ω)
Volg(M) = Vol(Bβ)

Vol(Sn)
holds, then we have:

(4.1) Volg(∂Ω)
Volg(M) >

Vol(∂Bβ)
Vol(Sn) ,

where we denote by Vol the Riemannian volume in the round sphere Sn.
Moreover, the equality in 4.1 holds if and only if (Mn, g) is isometric to
the standard sphere and Ω is isometric to the geodesic ball Bβ .
In [19] the authors proved an analog result in the setting of RCD∗(K,N)

spaces for K > 0 and N > 2. We state it in the setting of compact strat-
ified spaces. We consider (Xn, g,m) a compact stratified space with the
renormalized measure

m = Volg(X)−1dvg,
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so that m(X) = 1. The outer Minkowski content of an open set E ⊂ X is
used to measure the size of the boundary. It is defined by:

m+(E) = lim inf
ε→0+

m(Eε)−m(E)
ε

,

where Eε is the tubular neighbourhood of size ε of E with respect to the
distance dg. Then, thanks to Theorem 1.1 in [19] we have:

Corollary 4.4 (Lévy–Gromov isoperimetric inequality). — Let (Xn,

g,m) be a compact stratified space with singular Ricci curvature bounded
below by n−1 > 0. Then for every open set E ⊂ X the following inequality
holds:

m+(E) > Vol(∂Bβ)
Vol(Sn) ,

where β = m(E) and Bβ is a geodesic ball in Sn of volume Vol(Bβ) =
βVol(Sn).

We also obtain the following rigidity result:

Corollary 4.5 (Rigidity in Lévy–Gromov). — Let (Xn, g,m) be a
compact stratified space with singular Ricci curvature bounded below by
(n− 1). If there exists an open domain E in X satisfying:

m+(E) = Vol(∂Bβ)
Vol(Sn) ,

then there exists a compact stratified space (Y n−1, h) with singular Ricci
curvature bounded below by (n − 2) such that (Xn, g) is isometric to the
spherical suspension ([0, π]× Y, dt2 + sin2(t)h).

Proof. — In [19], the authors prove that if equality holds in the Lévy–
Gromov isoperimetric inequality, then X must have diameter equal to π.
Therefore, by Theorem 2.3 and 3.1 in [44], (Xn, g) must be isometric to
a spherical suspension of a stratified space satisfying the analog bound on
the singular Ricci curvature. Another way to prove the same, is by using
Theorem 1.4 in [19], which tells us that the stratified space is isometric to
a spherical suspension of a RCD(n − 2, n − 1) space Y . In particular, the
spherical suspension is a stratified space and tangent cones at all points
are metric cones over a stratified space of dimension (n − 1). Now, then
tangent cone at the points {0}×Y and {π}×Y is the metric cone over Y .
As a consequence, Y is also a stratified space. �
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4.5. Weyl law

Let {λi}i∈N be the sequence of eigenvalues of the Laplacian ∆g. For any
λ > 0 we define:

N(λ) = ]{λi, such that λi 6 λ}.
A well-known result on smooth manifolds states that the asymptotics of
N(λ) as λ tends to infinity is given by λ−n/2 times a constant which depends
on the volume and on the dimension of the manifold. An analog result has
been proven in [10, Corollary 4.8] in the setting of RCD∗(K,N) spaces,
when the measure is Ahlfors n-regular for some n ∈ N; the Riemannian
volume is replaced by the n-dimensional Hausdorff measure of the space.
This result clearly applies to stratified spaces with singular Ricci curvature
bounded from below:

Corollary 4.6. — Let (Xn, dg, vg) be a stratified space with singular
Ricci curvature bounded from below. Then we have:

lim
λ→+∞

N(λ)
λ
n
2

= ωn
(2π)n Volg(X).

Observe that in the smooth setting the Weyl law holds without any
assumption on the Ricci curvature. It is then reasonable to believe that on
stratified spaces too, the hypothesis of singular Ricci curvature bounded
from below could be dropped.

4.6. Further properties of geodesics and CBB stratified spaces

The applications of Theorem A described in this subsection were pointed
to us by V. Kapovitch.

The RCD(K,N) property can be used to gain further knowledge on the
behavior of geodesics: we will be able to show that the regular set Xreg

of a stratified space (X, g) with singular Ricci curvature bounded below is
almost everywhere convex.
This will in turn allow us to use a theorem of N. Li to prove the analogue

of Theorem A in the presence of lower bounds on the sectional curvature.
Besides the work of N. Li [40] which considers such probabilistic convexity
properties in the context of Alexandrov geometry, these have also been
investigated for Ricci limit spaces, see [28] and the references therein.

The proof of the almost everywhere convexity of Xreg relies on the
measure contraction property MCP(K,N), which is a consequence of the
RCD(K,N) property, see [18, end of Section 5].

TOME 71 (2021), FASCICULE 1



152 J. BERTRAND, C. KETTERER, I. MONDELLO & T. RICHARD

A subset U of a geodesic metric measure space (X, d,m) is said to be
m-almost everywhere convex if for every x ∈ U :

m ({y ∈ X |no minimizing geodesic from x to y is included in U}) = 0.

Proposition 4.7. — Let (X, g) be a compact stratified space with sin-
gular Ricci curvature bounded below by some K ∈ R, then Xreg is vg-
almost everywhere convex.

Proof. — Without loss of generality we assume that (X, g) has volume 1,
so that vg is a probability measure.

Let G(X) denote the set of constant speed geodesics γ : [0, 1] → X and
Σ denote the singular set of X.
Since (X,dg) is RCD(K,N), it is essentially non branching and CD(K,N),

and will satisfy a measure contraction property which we state in the fol-
lowing form (see [18, Theorem 1.1]) :
Let µ0 ∈ P(X) be the Dirac mass at some point x0 and µ1 = vg

vg(A) |A
for some measurable A ⊂ X. There exists a unique optimal dynamical
transport plan Π ∈ P(G(X)) such that (e0)∗Π = µ0 and (e1)∗Π = µ1.
Moreover, for every t ∈ (0, 1], (et)∗Π is vg-absolutely continuous and satisfy:

(et)∗Π 6
C

tN
vg

vg(A) .

where C is a constant depending only on K, N and diam(X) and et :
G(X)→ X maps γ to γ(t).
Let us fix µ0 = δx0 with x0 ∈ Xreg, µ1 = vg

vg(X) and Π ∈ P(G(X))
the optimal dynamical transport plan defined above. Set Γ = {γ ∈ G(X ) |
∃ t ∈ [0, 1] γ(t) ∈ Σ}. To show that Xreg is vg-almost everywhere convex,
we need to show that vg(e1(Γ)) = 0.
We first show that Π(Γ) = 0. Pick l ∈ N big enough such that εdiam(X)6

dg(x0,Σ) = δ with ε = 2−k and set, for every integer i between 0 and 2l−1:

Γi =
{
γ ∈ G(X)

∣∣ γ ([ i2l , i+1
2l ]
)
∩ Σ 6= ∅

}
.

We have that Γ =
⋃2l−1
i=1 γi.

Note that Γi = ∅ as long as i
2l 6 δ.

If Π(Γ) > 0, then there are some i such that Π(Γi) > 0. For every such
i, let Πi = Π

Π(Γi) |Γi . Being the restriction of Π, Πi is an optimal dynamical
transport plan between δx0 and the borel set Bi = e1(Γi), thus we can
apply the measure contraction property to Πi and get :

(et)∗(Πi) 6
C

tN
vg

vg(Bi)
= C

tN
vg

Π(Γi)
.
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Now we notice that if γ ∈ Γi and t ∈ [ i2l ,
i+1
2l ], then d(γ(t),Σ) 6 Dε which

can be rephrased as et(Γi) ⊂ Σε where ΣεD is the εD tubular neighborhood
around Σ. Hence, for t ∈ [ i2l ,

i+1
2l ] :

1 = (et)∗Πi(X) = (et)∗(Πi(ΣεD)) 6 C

tN
vg(ΣεD)
Π(Γi)

6
C

( δD )N
vg(ΣεD)
Π(Γi)

since t > δ
D if Γi 6= ∅.

Thus :
Π(Γi) 6 Cδ−NDNvg(ΣεD).

We can now estimate :

Π(Γ) 6
∑
i

Π(Γi) 6 2lCδ−NDNvg(ΣεD)

6 2lCδ−NDNA(εD)2 6 2−lCAδ−NDN+2

since the volume of Σε can be bounded from above by Aε2 for some constant
A > 0. This comes from the fact that Σ has codimension at least 2 using
the same ideas as Section 1.2.3.
Since l can be chosen to be arbitrarily large, we have shown that

Π(Γ) = 0. Now vg(e1(Γ)) = Π(Γ) and thus (X, dg) is vg-almost everywhere
convex. �

Remark 4.8. — We actually proved here that for any subset Y of an
RCD(K,N) space (X, d,m) such that m(Y ε)

ε goes to 0 as ε goes to 0, X\Y
is m-almost everywhere convex. This applies in particular for a stratified
space with singular Ricci curvature bounded below and Y = Σ its singular
set, thanks to the fact that the singular set has codimension smaller or
equal than two.

We can now use the previous result together with the theorem of N. Li [40]
to characterize stratified spaces with curvature bounded from below in the
sense of Alexandrov (Corollary B in the introduction). Recall that a geo-
desic space (X, d) is said to be an Alexandrov space with curvature bounded
from below by k (CBB(k) in short) if geodesic triangles in (X, d) are larger
than their couterparts in the simply connected surface of constant curva-
ture k. For a precise definition we refer to [15, Chapters 4 and 10].

Corollary 4.9. — Let (X, g) be a compact stratified space. Then
(X, dg) is CBB(k) if and only if the following two conditions are satisfied :

(i) The sectional curvature of g is larger than or equal to k on Xreg.
(ii) The angle α along the codimension 2 stratum Σn−2 is at most 2π.
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Proof. — The “only if” part is proven along the same lines as the
RCD(K,N) case, see Section 5.1. The condition on the regular set comes
from the existence of convex neighborhoods and the Riemannian Topono-
gov Theorem. The angle condition on the codimension 2 stratum comes the
fact that tangent cones to CBB(k) spaces are CBB(0) spaces and that a 2
dimensional metric cone is CBB(0) if and only if its angle is at most 2π.
For the “if” part, we use Corollary 0.1 of [40]. It states that if in a geodesic

metric space (X, d) of Hausdorff dimension n, one can find an open dense
set Y which is Hn-almost everywhere convex and such that any point in Y
has a convex neighborhood which is CBB(k), then (X, d) is CBB(k). In our
case, Xreg is open and dense in (X, d), and is almost everywhere convex
by the previous proposition. Furthermore every point in Xreg has a convex
neighborhood by Section 5.1 which is CBB(k) by the classical Toponogov
Theorem.
Hence (X, dg) has curvature bounded from below by k in the sense of

Alexandrov. �

5. Proof of the main theorem

This section is devoted to the proof of our main theorem:

Theorem A. — A compact stratified space (X, dg, vg) endowed with an
iterated edge metric g satisfies the RCD(K,N) condition if and only if its
dimension is smaller than or equal to N and the iterated edge metric g has
singular Ricci curvature bounded below by K in the sense of Definition 3.1.

The proof is divided in two parts. In the first part we prove that a
compact stratified space which is also RCD(K,N) has a singular Ricci
lower bound. In the second part, we prove the reverse implication, by
showing the Barky-Émery inequality. At the end of Section 2, we ob-
served that a compact stratified space meets the assumption of Theo-
rem 2.5, and as a consequence the Bakry–Émery inequality implies that
the space is an RCD∗(K,N) space. The equivalence between RCD∗(K,N)
and RCD(K,N) proven in [17] allows us to conclude.

5.1. RCD implies singular Ricci curvature bounded below

Proposition 5.1. — Let X be an n-dimensional stratified space, and
let g be an iterated edge metric. Assume (X, dg, vg) satisfies the condition
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CD(K,N) (or the condition CD∗(K,N)) with K ∈ R and N ∈ [1,∞).
Then, g has singular Ricci curvature bounded from below by K (in the
sense of a stratified space) and n 6 N .

Proof.
Step 1. — First, we observe that the condition CD(K,N) (or CD∗(K,N))

implies that dimH 6 N by [56, Corollary 2.5]. Hence, dimXreg = n 6 N .
In Subsection 2.1.5 we also showed that X equipped with dg and vg is

a metric measure space that is infinitesimal Hilbertian independent of any
curvature assumption. Hence, if (X, dg, vg) is a CD(K,N) (or CD∗(K,N))
space, it also satisfies the condition RCD(K,N) (or RCD∗(K,N)). Note
that, by Corollary 13.7 in [17], RCD and RCD∗ are equivalent conditions,
thus from now on we only write RCD.
Step 2. — Moreover, consider x ∈ Xreg. We are going to show that at

x ∈ Xreg, the Ricci tensor associated to the iterated edge metric g satisfies
Ricg > K.
Recall that g is a Riemannian metric on Xreg that induces a distance

function d̃ on Xreg. In general, it is clear that d̃ > dg|Xreg×Xreg , and ε-balls
w.r.t. dg coincide with ε-balls w.r.t. d̃ provided ε > 0 is sufficiently small.
Moreover, by [16, Chapter 3] for any such ε we can find η ∈ (0, ε/4) such
that Bη(x) is geodesically convex w.r.t. d̃.

Claim. — We have d̃|
Bη(x)×Bη(x) = dg|Bη(x)×Bη(x).

Proof of the claim. — Indeed, if γ is a minimizing dg-geodesic between
y, z ∈ Bη(x), by the triangle inequality we have that Im γ ⊂ Bε(x). There-
fore, d̃(y, z) 6 dg(y, z) since γ is an admissible competitor for d̃. The other
inequality already holds, and therefore the claim follows. �

Hence, (Y, d̃ = dg|Y , vg|Y ) with Y = Bη(x) is a geodesically convex sub-
space with positive measure of a metric measure space (X, dg, vg) satisfying
the condition CD(K,N), and therefore satisfies the condition CD(K,N) as
well (or the condition CD∗(K,N)) by [56, Proposition 1.4].
Then, we can proceed with similar arguments as in the proofs of Theo-

rem 1.7 in [56], Theorem 1.1 in [48], or Theorem 7.11 in [5]. We note that
one usually assumes the context of a closed Riemannian manifold without
boundary that is different from ours. But it is clear that the arguments
adapt to the case of an open, geodesically convex domain. For instance,
let us briefly outline the argument from [5] (compare also with the proof
Theorem 6.1 in [38]).

Assume the condition CD(K,N) holds but there exists a regular point
x ∈ X and a tangent vector v at x such that Ricg |x(v) 6 (K − 4ε)|v|2.
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Then, one can pick η as above, and one finds a smooth function φ with
compact support in Bη(x) such that

∇φ|x = v and ∇2φ(x) = 0.

We can replace φ and v by δφ and δv such that the previous identities
remains true. Then φ becomes a smooth Kantorovich potential provided δ
is sufficiently small. If we define Tt(y) = expy(−t∇φ|y) for t ∈ [0, 1] and

µt = T?µ0 with µ0 = vg(Bθ(x))−1vg|Bθ (x)

then t ∈ [0, 1] 7→ µt becomes a smooth L2-Wasserstein geodesic for θ � η.
Note that by choice of Bη(x) and φ each transport geodesic t ∈ [0, 1] 7→
Tt(y) is contained in Bη(x). By choosing δ and θ sufficiently small one can
achieve that no transport geodesic meets a cut point and σy : t ∈ [0, 1] 7→
log detDTt(x) satisfies

σ′′y + 1
n

(
σ′y
)2 +K − ε > 0 on [0, 1].

for any y ∈ Bη(x). The previous Riccati-type inequality in particular fol-
lows from smooth Jacobi field compuations for geodesic variations in Bη(x).
From this one can deduce an inequality for Sn along (µt)t∈[0,1] like in the
definition of CD(K,N) but with reverse inequalities and K replaced by
K − ε (again compare with [38]). This gives a contradiction.
Step 3. — It remains to show that for any point x ∈ Σn−2 the angle αx

at x (see Remark 1.5) is smaller than 2π, or equivalently, the link of Σn−2

has diameter smaller than π. Pick a point x ∈ Σn−2. Recall that the cor-
responding link Zn−2 is a circle S1. Moreover, by Remark 1.9 the tangent
cone at x is an exact metric cone over the tangent sphere (Sn−1

x , hx), where
Sn−1
x is the (n−3)-fold spherical suspension of the link Zn−2 equipped with

the metric α2
x(dθ)2, where (dθ)2 is the standard angle metric. For simplic-

ity, from now on we denote Zx = (Zn−2, α
2
x(dθ)2). Remark 1.14 implies

that (C(Sn−1
x ), dC , rn−1dr⊗Hn−1

Sn−1
x

) is the pointed measured GH limit of a
sequence of RCD(εK,N)-spaces as ε→ 0. Therefore, by the stability of the
RCD condition, (C(Sn−1

x ), dC , rn−1dr ⊗Hn−1
Sn−1
x

) is an RCD(0, N)-space.
Since Sn−1

x is an (n − 3)-fold suspension, it follows that C(Sn−1
x ) splits

off (Rn−2,Ln−2). Since (C(Sn−1
x ), dC , rn−1dr⊗Hn−1

Sn−1
x

) is a metric measure
cone, the remaining factor C(Zx) is still a metric cone equipped with the
cone measure rdr⊗H1

Zx
and satisfies CD(0, N−(n−2)) by Gigli’s splitting

theorem for RCD spaces. Finally, we can apply Corollary 2.6 of [13] or [36]
that yields diamZx 6 π, and thus αx 6 2π. �
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5.2. Singular Ricci curvature bounded below implies RCD

For the second implication, we are going to prove that a compact strati-
fied space with a singular lower Ricci curvature bound satisfies the Bakry-
Émery condition given in Definition 2.3. As illustrated in Subsection 2.1.5,
we can then apply Theorem 2.5 and conclude. For the sake of clarity, we
state here the weak Bochner inequality of Definition 2.3 in the setting of a
compact stratified space.

A compact stratified space (X, dg, vg) satisfies the BE(K,N) condition
for K ∈ R and N ∈ N if for any function u ∈ W 1,2(X) such that ∆gu ∈
W 1,2(X) and for any test function ψ ∈W 1,2(X)∩L∞(X) such that ∆gψ ∈
L∞(X), ψ > 0 we have:

(5.1) − 1
2

ˆ
X

∆gψ|du|2dvg +
ˆ
X

ψ(∇(∆gu),∇u)gdvg

>
ˆ
X

ψ

(
K|du|2 + (∆gu)2

N

)
dvg.

5.2.1. Proof of the Bochner inequality on stratified spaces

We are going to prove the weak Bochner inequality first for an eigenfunc-
tion ϕ of the Laplacian, then for finite linear combinations of eigenfunctions.
Since eigenfunctions are dense in the domain of the Laplacian, we will get a
first Bochner inquality with the further assumption that the test function
ψ has bounded gradient. We will be able to drop this assumption and get
the inequality (5.1) by using the ultracontractivity of the heat semigroup.
We recall here some regularity properties of eigenfunctions. First of all,

we know that an eigenfunction ϕ belongs to W 1,2(X)∩L∞(X); moreover,
when we have singular Ricci curvature bounded below by a constant K ∈ R
as in Definition 3.1, it is possible to show that an eigenfunction belongs to
W 2,2(X) and that it’s gradient is bounded. This is proven in [43] whenK =
(n−1), but actually does not depend onK being positive. We sketch briefly
the main lines of the proof without the assumption that K is positive.
Corollary 2.4 in [42] states the following:

Proposition 5.2. — Let X be a compact stratified space of dimension
n, endowed with an iterated edge metric g. Let ϕ be an eigenfunction for
the Laplacian and Σε a tubular neighbourhood of the singular set Σ of size
ε > 0. Assume that for any x ∈ X, the tangent sphere Sx is such that
λ1(Sx) > (n− 1). Then there exists a positive constant C such that

‖∇ϕ‖L∞(X\Σε) 6 C
√
| ln(ε)|.
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If the iterated edge metric g is such that the singular Ricci curvature
is bounded below by K ∈ R, as in Definition 3.1, then the assumption of
the previous Proposition holds. Indeed, we know that Ricg > K on Xreg

implies that the singular Ricci curvature of each link (Zj , kj) is bounded
below by (dim(Zj) − 1). As a consequence, when x belongs to a stratum
of codimension larger than two, the tangent sphere (Sx, hx) has singular
Ricci curvature bounded below by (n− 2). Then the Lichnerowicz theorem
in [43] implies that λ1(Sx) > (n−1). Since we also assumed that the angles
along the stratum of codimension 2 are smaller than 2π, we have the same
lower bound for λ1(Sx) when x belongs to Σn−2. Therefore, we can apply
Proposition 5.2 and get the estimate on the gradient of eigenfunctions.
In the proof of Lichnerowicz theorem in [43], we also deduce that |∇ϕ|

belongs toW 1,2(X)∩L∞(X). This is done by using the Bochner inequality
on the regular set and by constructing the appropriate family of cut-off
functions:

Lemma 5.3. — LetX be a stratified space and g an iterated edge metric
with singular Ricci curvature bounded below by K ∈ R.

Then for any ε > 0 there exists a family of cut-off functions ρε ∈
C∞0 (Xreg), which satisfy the following properties:

(1) 0 6 ρε 6 1 and ρε vanishes on a tubular neighbourhood of the
singular set;

(2) The norm in L2(X) of |∇ρε| and the norm in L1(X) of |∆gρε|
converge to zero when ε tends to zero.

This argument does not depend on K being positive. For the details of
the construction, see [42] or [43]. We summarize in the following:

Proposition 5.4. — Let X be an n-dimensional stratified space en-
dowed with the iterated edge metric g. Assume that g has singular Ricci
curvature bounded below by K ∈ R. Then any eigenfunction ϕ of the
Laplacian belongs to W 2,2(X)∩L∞(X) and the gradient ∇ϕ has bounded
norm on X.

In particular, eigenfunctions are Lipschitz functions for a compact strati-
fied space satisfying Definition 3.1. Note that this approach does not apply
in presence of angles larger than 2π along the stratum of codimension two.
Indeed, when the angles are larger than 2π, Theorem A in [2] implies that
eigenfunctions are at most β-Hölder continuous with β < 1.
The regularity of eigenfunctions and the existence of an appropriate fam-

ily of cut-off functions allows us to prove the Bochner inequality for an
eigenfunction φ:
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Proposition 5.5 (Bochner inequality for eigenfunctions). — Let (Xn,g)
be a stratified space, whose iterated edge metric g has singular Ricci cur-
vature bounded below by K ∈ R.
Then for any ϕ eigenfunction of the Laplacian ∆g and ψ ∈ D(∆g) ∩

L∞(X) such that ∆gψ ∈ L∞(X) we have:

(5.2) − 1
2

ˆ
X

∆gψ|dϕ|2dvg +
ˆ
X

ψ(∇(∆gϕ),∇ϕ)gdvg

>
ˆ
X

ψ

(
K|dϕ|2 + (∆gϕ)2

n

)
dvg.

Proof. — Since ∆gϕ = λϕ, and since the Bochner formula holds on the
regular set Xreg we have:

−1
2∆g|dϕ|2 + λ|dϕ|2 = Ricg(dϕ,dϕ) + |∇dϕ|2 on Xreg.

Note that ϕ is smooth on the regular set Xreg, and therefore ∆g|dϕ|2 is
well-defined on Xreg.

Now consider ψ ∈ D(∆g) ∩ L∞(X) such that ∆gψ ∈ L∞(X) and for
ε > 0 choose a cut-off function ρε, 0 6 ρε 6 1, vanishing on a tubu-
lar neighbourhood of the singular set, as in Lemma 5.3. We multiply the
previous equality by ρεψ and then integrate on X:

− 1
2

ˆ
X

ρεψ∆g|dϕ|2dvg +
ˆ
X

ρεψλ|dϕ|2dvg

=
ˆ
X

ρεψ(Ricg(dϕ,dϕ) + |∇dϕ|2)dvg.

As for the right-hand side, we use Cauchy–Schwarz inequality and the fact
that Ricg > K on the regular set in order to get:
ˆ
X

ρεψ(Ricg(dϕ,dϕ) + |∇dϕ|2)dvg >
ˆ
X

ρεψ

(
K|dϕ|2 + (∆gϕ)2

n

)
dvg.

This converges to the right-hand side of (5.2) when ε goes to zero. As for
the second term in the left-hand side, we have:

ˆ
X

ρεψλ|dϕ|2dvg =
ˆ
X

ρεψ(∇(∆gϕ),∇ϕ)gdvg,

which also converges to the second term in the left-hand side of the Bochner
inequality (5.2). It remains to study the first term in the left-hand side. By
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integrating by parts we obtain:

(5.3)
ˆ
X

ρεψ∆g|dϕ|2dvg =
ˆ
X

ρε∆gψ|dϕ|2dvg +
ˆ
X

ψ∆gρε|dϕ|2

− 2
ˆ
X

(dψ,dρε)g|dϕ|2dvg.

The first term in the right hand side in this last identity converges to the
first term in the right-hand side of (5.2) when ε goes to zero, then we need
to show that the other two terms tend to zero as ε goes to zero. Consider
the second term in the right-hand side of (5.3). Since ψ and |dϕ| belong to
L∞(X) we have:∣∣∣∣ˆ

X

ψ∆gρε|dϕ|2dvg
∣∣∣∣ 6 cˆ

X

|∆gρε| |dϕ|2dvg 6 c1
ˆ
X

|∆gρε|dvg.

Now, ρε is constructed in such a way that this last integral converges to
zero as ε goes to zero. As for the last term in (5.3) we can again use that
|dϕ| is bounded and the Cauchy-Schwarz inequality in order to get:∣∣∣∣ˆ

X

(dψ,dρε)g|dϕ|2dvg
∣∣∣∣ 6 c1(ˆ

X

|dψ|2dvg
) 1

2
(ˆ

X

|dρε|2dvg
) 1

2

,

and ρε is chosen in such a way that the norm of its gradient in L2(X) tends
to zero as ε goes to zero. As a consequence, we get the desired Bochner
inequality. �

Proposition 5.6 (Finite linear combinations). — Under the same as-
sumptions on X, g and ψ, consider a finite linear combination of eigenfunc-
tions:

ϕ =
N∑
k=1

akϕk.

Then the Bochner inequality (5.2) holds for ϕ.

Proof. — Observe that ϕ has the same regularity as an eigenfunction,
meaning that ϕ belongs to D(∆g)∩L∞(X), its Laplacian ∆gϕ and gradient
|dϕ| are bounded, and it is smooth on Xreg. Moreover, the Bochner formula
holds on the regular set Xreg; we have then:

−1
2∆g|dϕ|2 + (∇(∆gϕ),∇ϕ)g = Ricg(dϕ,dϕ) + |∇dϕ|2 on Xreg.
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As we did before, we multiply this equality by ρεψ and integrate on X:

(5.4) − 1
2

ˆ
X

ρεψ∆g|dϕ|2dvg +
ˆ
X

ρεψ(∇(∆gϕ),∇ϕ)gdvg

=
ˆ
X

ρεψ
(
Ricg(dϕ,dϕ) + |∇dϕ|2

)
dvg

The right-hand side of this equality is bounded by below by:ˆ
X

ρεψ

(
K|dϕ|2 + (∆gϕ)2

n

)
dvg,

which converges to the right-hand side of the desired Bochner inequality
when ε tends to zero. The second term in the left-hand side of (5.4) also
converges to the corresponding term in the Bochner inequality, since all
the quantities playing here are bounded. It remains to study the first term
in the left-hand side of (5.4). We decompose it as before by integrating by
parts; since |dϕ| is bounded, we can apply the same argument as before to
get that, when ε goes to zero, the first term in the left-hand side of (5.4)
tends to: ˆ

X

∆gψ|dϕ|2dvg.

This concludes the proof and proves that the Bochner inequality holds for
finite linear combinations of eigenfunctions. �

Proposition 5.7. — Let X be a compact stratified space of dimen-
sion n, endowed with iterated edge metric g with singular Ricci curva-
ture bounded below by K ∈ R. Then for all functions φ ∈ D(∆g) with
∆gφ ∈W 1,2(X) and all ψ ∈ D(∆g) ∩ L∞(X), with ψ > 0, bounded gradi-
ent |∇ψ| and Laplacian ∆gψ, we have

− 1
2

ˆ
X

∆gψ|dφ|2dvg +
ˆ
X

ψ(∇(∆gφ),∇φ)gdvg

>
ˆ
X

ψ

(
K|dφ|2dvg + (∆gφ)2

n

)
dvg.

Proof. — Denote by {λi}i∈N the sequence of eigenvalues of the Laplacian
∆g, define V = span{ϕi}i∈N and the multiplication operators Li on V by:

Liu = aiλiϕi, u =
∑
k∈N

akϕk.

Consider the operator
L =

⊕
i∈N

Li,
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which is essentially self-adjoint and closable (see Problem 1(a) in [47, Chap-
ter X]). Observe that the Laplacian ∆g is a self-adjoint extension of L, thus
it is its unique self-ajdoint extension.
We can also construct self-adjoint extensions by considering the

Friedrichs extenstion LF and the closure L̄ of L. The first is obtained as
the self-adjoint operator whose domain is the closure of V with the norm:

‖u‖2F = ‖u‖22 + (Lu, u) = ‖u‖22 +
ˆ
X

u∆gudvg = ‖u‖21,2.

As for the second, one needs to close V with respect to the graph norm:

(5.5) ‖u‖2L = ‖u‖22 + ‖Lu‖22 = ‖u‖22 +
ˆ
X

(∆gu)2dvg.

Since L is essentially self-adjoint and its extension is the Laplacian, these
two extensions coincides and V is dense in D(∆g) with respect to both the
norm of W 1,2(X) and the graph norm (5.5). Therefore, for each function φ
in the domain of the Laplacian, there exists a sequence {ui}i∈N ⊂ V which
converges to φ in W 1,2(X) and such that {∆gui}i∈N converges to ∆gφ.
Since the Bochner inequality holds for any ui ∈ V , we have:

− 1
2

ˆ
X

∆gψ|dui|2dvg +
ˆ
X

ψ(∇(∆gui),∇ui)gdvg

>
ˆ
X

ψ

(
K|dui|2dvg + (∆gui)2

n

)
dvg.

We can pass to the limit as i goes to infinity in the right-hand side and
in the first term of the left-hand side, since both ψ and its Laplacian are
bounded. As for the second term in the left-hand side, we can rewrite it in
the following way:ˆ

X

ψ(∇(∆gui),∇ui)gdvg =
ˆ
X

ψ(∆gui)2dvg −
ˆ
X

∆gui(∇ui,∇ψ)gdvg.

Since |∇ψ| is bounded we can use Cauchy-Schwarz inequality twice to get:ˆ
X

∆gui(∇ui,∇ψ)gdvg 6 C‖∆gui‖2‖∇ui‖2.

Therefore, when we pass to the limit as i goes to infinity we get:
ˆ
X

ψ(∆gui)2dvg −
ˆ
X

∆gui(∇ui,∇ψ)gdvg

→
ˆ
X

ψ(∆gφ)2dvg −
ˆ
X

∆gφ(∇φ,∇ψ)gdvg.

As a consequence we can pass to the limit in the second term of the left-
hand side of the Bochner inequality, and we get the desired inequality. �
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In order to have the integral Bochner inequality (5.1) implying
RCD(K,n), for the right set of test functions, we need to drop the as-
sumption that the test function has bounded gradient. In order to do that,
we are going to use the properties of the heat semigroup that we recalled
in the first section.
We are now in position to prove:

Theorem 5.8. — Let X be an n-dimensional stratified space endowed
with an iterated edge metric g with singular Ricci curvature bounded below
by K ∈ R. Then X satisfies the Bakry-Émery condition BE(K,n).

Proof. — Consider ψ a test function such that ψ ∈ D(∆g) ∩ L∞(X),
ψ > 0 and ∆gψ is bounded. Up to adding a positive constant to ψ, we can
assume that ψ is strictly positive. Let Pt be the heat semigroup associated
to the Laplacian; since V , the span of eigenfunctions, is dense in the domain
of the Laplacian, let ψi a sequence in V converging to ψ in W 1,2(X) with
∆gψi converging in L2(X) to ∆gψ. For fixed t > 0, consider Ptψi. Because
of ultracontractivity of the heat semigroup in Lemma 1.17, we have

‖Pt(ψ − ψi)‖∞ 6 Ct‖ψ − ψi‖2

for any t > 0, and therefore Ptψi uniformly converges to Ptψ; since ψ
is positive, so is Ptψ, and then for i large enough Ptψi is positive too.
Moreover, ψi is a finite linear combination of eigenfunctions, then Ptψi,
∇Ptψi and ∆gPtψi all belongs to L∞(X). As a consequence, Ptψi satisfies
the assumptions of the previous theorem and we can use it as a test function
in the Bochner inequality: for all u ∈ D(∆g) with ∆gu ∈W 1,2(X) we have

− 1
2

ˆ
X

∆gPtψi|du|2dvg +
ˆ
X

Ptψi(∇(∆gu),∇u)gdvg

>
ˆ
X

Ptψi

(
K|du|2 + 1

n
(∆gu)

)
dvg.

Using the uniform convergence, we can pass to the limit as i goes to infinity
and get:

− 1
2

ˆ
X

∆gPtψ|du|2dvg +
ˆ
X

Ptψ(∇(∆gu),∇u)gdvg

>
ˆ
X

Ptψ

(
K|du|2 + (∆gu)2

n

)
dvg.

Now if we consider the limit as t goes to zero, we know that for any bounded
function f , Ptf converges to f w.r.t. weak-*-topology in (L1(X))∗. We can
use this with f = ψ and since in the previous inequality Ptψ is multiplied
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by functions belonging to L1(X), we can pass to the limit for t going to
zero and obtain:

− 1
2

ˆ
X

∆gψ|du|2dvg +
ˆ
X

ψ(∇(∆gu),∇u)gdvg

>
ˆ
X

ψ

(
K|du|2 + (∆gu)2

n

)
dvg.

as we wished. �

Corollary 5.9. — LetX be an n-dimensional stratified space endowed
with an iterated edge metric g with singular Ricci curvature bounded below
by K ∈ R. Then X satisfies RCD(K,N) for any N > n.

Indeed, Proposition 4.9 and Theorem 4.19 in [29] state that the Bakry-
Émery condition BE(K,N) implies RCD∗(K,N). Then X is essentially
non-branching, and [17] proved that for an essentially non-branching metric
measure space of finite measure, CD∗(K,N) is equivalent to CD(K,N).
This concludes our proof.

Appendix A.

Distance on a stratified space

In this part, we provide some technical facts needed to check that the
length structure introduced in Section 1.2.1 meets the assumptions de-
scribed in [15, Section 2.1], by using the local description of geodesic balls
given in the first section. We also prove Lemma 1.7.

Lemma A.1. — Let (X, g) be a compact stratified space of dimension
n endowed with the iterated edge metric g.

(1) For x, y ∈ Xreg, there exists an admissible curve γ between x and
y of finite length: Lg(γ) < +∞.

(2) For x ∈ Σ, there exists C > 0 such that for any r > 0 small
enough, any radial curve ρ : [0, r)→ B0,j(x, r) ∼ C[0,r)(Sx) (where
∼means the sets are homeomorphic) with respect to the cone metric
gC = ds2 + s2hx satisfies

Lg(ρ) 6 Cr.

(3) For x ∈ Σ, r > 0 small enough, there exists ε = ε(r) such that for
any admissible curve γ ⊂ B0,j(x, r) ∼ C[0,r](Sx) from x to a point
(r, y) ∈ C[0,r](Sx) satisfies

Lg(γ) > (1− ε)r.
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Remark A.2. — For x ∈ Xreg, the last two items can be proven using
the existence of arbitrary small geodesically convex neighbourhoods (see
for instance [16, Chapter 3]) and Gauss’ lemma.

Proof.
(1). — Take any continuous curve γ from x to y contained in the open

connected set Xreg; observe that any regular point admits a neighbourhood
where the iterated edge metric is locally Lipschitz equivalent to the stan-
dard Euclidean metric, the compactness of the image of γ then guarantees
γ has finite length.
(2). — Take r so small that

(A.1) |ψ∗xg(ρ̇, ρ̇)− gC(ρ̇, ρ̇)| 6 ΛrαgC(ρ̇, ρ̇)

holds on B0,j(x, r)reg ∼ C[0,r)(Sreg
x ), thanks to (1.4). Note that gC(ρ̇, ρ̇) = 1

since ρ(t) = (t, y) ∈ C[0,r)(Sreg
x ) and gC is a cone metric.

(3). — This proof also builds on (A.1). One can assume that r is so small
that γ(t) = (r(t), y(t)) ∈ C[0,r)(Sreg

x ) for t 6= 0. Then, the above equation
gives us

ψ∗xg(γ̇, γ̇) > (1− Λrα)gC(γ̇, γ̇) > (1− ε)ṙ2(t).
The result follows by integrating this inequality. �

Lemma A.3. — Let (X, g) be a compact stratified space of dimension
n endowed with the iterated edge metric g. Let γ : [0, 1] → X be an
admissible curve. For any ε there exists an admissible curve γε with the
same endpoints as γ and such that γε((0, 1)) is contained in the regular set
Xreg and:

Lg(γε) 6 Lg(γ) + ε.

The proof is done by induction on the dimension of the stratified space;
note that in one dimension, the only compact stratified space is the circle
whose singular set is empty. Therefore, from now on we assume:

Induction hypothesis. — For some n > 1, and for any compact stratified
space of dimension (n− 1), the previous proposition holds.

By definition of an admissible curve, γ meets the singular set Σ at most
finitely many times. Therefore by additivity of the length, it suffices to prove
the result in the case where γ meets Σ in exactly one point. The proof of this
fact is in two steps. First, we prove this result in the case of an exact cone
metric on a truncated cone, for a curve that only intersects the singular
set at the tip of the cone. Then we will use the description of geodesic
balls given in the first section: in a small ball around a singular point the
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iterated edge metric is close to the exact cone metric on a truncated cone
over the tangent sphere, therefore we can apply a similar construction to
the one given in the case of an exact cone metric. Let us start with:

Lemma A.4. — Let (S, h) be a stratified space of dimension (n − 1)
and consider the metric cone (C(S),dρ2 + ρ2h) over S; denote by o the
vertex of the cone. Let x, y be two regular points in S, r ∈ (0, 1) and
γ : [−a, a] → C(S) an admissible curve connecting (r, x) and (r, y) such
that γ(0) = o and γ(t) ∈ C(Sreg) \ {o} for any t 6= 0. Then for any ε > 0,
there exists γε : [−a, a]→ C(S) such that:

(1) γε(t) belongs to C(Sreg) \ {o} for all t ∈ [−a, a];
(2) LC(γε) 6 LC(γ) + ε, where LC is the length with respect to the

exact cone metric dρ2 + ρ2h.

Proof. — Fix ε > 0, let δ ∈ (0, r) to be chosen later. By continuity of γ,
there exists t0, t1 such that t0 < 0 < t1, γ(t0) = (δ, x), γ(t1) = (δ, y), and
the radial coordinate ρ(γ(t)) 6 δ for t ∈ [t0, t1]; let us set c1 = γ|[−a,t0]
and c2 = γ|[t1,a], by hypothesis on γ, both c1 and c2 lie in the regular
set of the cone C(S). Now consider an admissible curve in the (n − 1)-
dimensional stratified space S connecting x and y. Thanks to the induction
hypothesis, there exists an admissible curve cε from x to y, lying in the
regular set of S, and whose length in S with respect to the metric h satisfies
Lh(cε) 6 Lh(c) + ε. Define γε to be the concatenation of c1, cε and c2. Its
length therefore satisfies:

LC(γε) 6 LC(γ) + δLh(cε),

where we used that the length of cε with respect to the exact cone metric of
C(S) is LC(cε) = Lδ2h(cε). We can choose δ small enough so that LC(γε) 6
LC(γ) + ε. �

Now consider a general compact stratified space (Xn, g). We recall that
any x ∈ X admits an open neighbourdood homeomorphic to the truncated
cone C(Sx) over the tangent sphere Sx. Moreover, if we denote by gC =
dρ2 + ρ2h the cone metric on C[0,r0)(Sx), we know thanks to (1.4) that in
C[0,r0)(Sx) the metric g is not far from gC : there exists positive constants
Λ and α such that

(A.2) |ψ∗xg − gC | < Λrα0 .

Consider an admissible curve γ of finite length Lg(γ). We use the same
notation and apply the same construction as the one in the proof of Lem-
ma A.4. The point is to estimate the length Lg(cε). Since cε is contained in
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Sreg, we can further assume the curve has constant speed Lh with respect
to the metric h. Thus, (A.2) yields

|ψ∗xg(ċε, ċε)− δ2L2
h| 6 Λδα+2Lh.

As a consequence, we get Lg(cε) 6 ε provided δ is chosen small enough.
By construction of γε, we obtain

Lg(γε) 6 Lg(γ) + ε.

A construction of a singular stratum

We are going to illustrate one of the examples in Section 3. Consider a
round sphere S3 with round metric g0 and a closed circle S1

β in S3. We are
going to show that we can write the metric g0 in a tubular neighbourhood
Uε of S1

β of size ε small enough so that g0 is a perturbation of the product
metric dr2 + r2dϕ2 + a2dθ2 (for a the radius of S1

β). More precisely, we
show that there exists a positive constant Λ such that:

(A.3) |g0 − (dr2 + r2dϕ2 + a2dθ2)| 6 Λrγ + o(rγ),

with γ = 1 if the circle S1
β is not totally geodesic and γ = 2 otherwise.

We look at the sphere S3 in R4 = R2×C with coordinates (x1, x2, ρe
iθ).

Up to changing the coordinate system in R4, we can parameterize the circle
S1
β with the curve:

c(θ) =

 cos(β)
0

sin(β)eiθ

 .

Observe that S1
β is a circle of radius a = sin(β) contained in the totally

geodesic sphere S2 in S3, obtained as the intersection of S3 with the plane
{x2 = 0}. Moreover, the case β = π

2 corresponds to a great circle in this
S2. Then for β = π/2, c is totally geodesic in S3. We aim to write the
metric on a tubular neighbourhood Uε of S1

α as an admissible metric for a
stratified space; we start by parameterizing the coordinates of a point in a
tubular neighbourhood of S1

β . We can think of the tubular neigbourhood
of S1

β as the product of a disk orthogonal to c and an appropriate interval
(−ε, ε). Therefore, in order to give the coordinates of a point in Uε, we
start by constructing the ones of a point in a unit sphere orthogonal to
c(θ). We consider the following two vectors orthogonal to c and to the
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tangent vector ċ:

v1 =

 0
1
0

 , v2 =

 − sin(β)
0

cos(β)eiθ


For fixed θ, v1 and v2 span a plane in R4 which is orthogonal to c at c(θ).
Therefore a point in the unit sphere normal to c(θ) can be written in the
following coordinates:

w = sin(ϕ)v1 + cos(ϕ)v2 =

 − sin(β) sin(ϕ)
cos(ϕ)

cos(β) sin(ϕ)eiθ

 , for ϕ ∈ [0, 2π).

As for a point in a tubular neighbourhood of c(θ), we then get:

F (r, θ, ϕ) = cos(r)c(θ) + sin(r)w,

where r varies in a small interval (−ε, ε) in (0, π), for some ε depending on
β. We are going to write the metric in these new coordinates. Observe that
we have:

∂rF = − sin(r)c(θ) + cos(r)w, |∂rF |2 = 1.

∂ϕF = sin(r)

 − sin(β) cos(ϕ)
− sin(ϕ)

cos(ϕ) cos(β)eiθ.

 , |∂ϕF |2 = sin2(r).

∂θF = cos(r)

 0
0

i sin(β)eiθ

+ sin(r)

 0
0

i cos(β) sin(ϕ)eiθ


|∂θF |2 = cos2(r) sin2(β) + sin2(r) cos2(β) sin2(ϕ)

+ cos(r) sin(r) sin(2β) sin(ϕ).

Note that all the mixed terms vanish. Therefore, in Uε the metric can be
written in the following form:

g0 = dr2 + sin2(r)dϕ2 +
[
cos2(r) sin2(β) + sin2(r) cos2(β) sin2(ϕ)

+ cos(r) sin(r) sin(2β) sin(ϕ)
]
dθ2.

Observe that when β = π
2 , then g0 is the round metric on S3 written as

a doubly warped product on (0, π) × S1 × S1. When we consider ε and r

going to zero, we get the following asymptotic expansion:

g0 − (dr2 + r2dϕ2 + sin2(β)dθ2)

= r sin(2β) sin(ϕ)dθ2 + r2 cos2(β) sin2(ϕ)dθ2 + o(r3).
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When β = π
2 and thus the circle is totally geodesic, the term with factor r

vanishes, so that we can estimate the term on the right by some constant
Λ times r2. When β 6= π

2 , we estimate the term on the right by Λr + o(r).
This proves the desired inequality (A.3).

Weak gradients

In this part, we prove the following proposition

Proposition A.5. — Let (X, g) be a n−dimensional stratified space
andm be the corresponding Riemannian measure. Then, for any compactly
supported Lipschitz function f , the following equality holds m-a.e.

|∇f |∗ = Lip(f)

where the term on the l.h.s. is the minimal relaxed gradient while the term
on the other side is the local Lipschitz constant.

Proof. — Our argument is mainly based on the fact that the Liouville
measure L on the unit bundle of a Riemannian manifold is preserved by
the geodesic flow.
Let f be a compactly supported Lipschitz function on X and let fn ∈

L2(X,m) be a sequence of Lipschitz functions converging to f in L2(X,m)
such that |Dfn| weakly converge to |Df |∗ in L2(X,m). Let B(o,R) be
a ball on which f is supported, note that by definition of |Df |∗, we can
assume that the functions fn are supported in B(o, 2R) (just replace fn by
fnh where h is a Lipschitz function such that 1 > h > 0, h equals 1 on
B(o,R) and is supported on B(o, 2R), and conclude by minimality of the
relaxed gradient). Moreover, up to mollify the fn, we can further assume
that fn are C1 functions on the regular subset Xreg of X. Since we look
for an equality that may fail on a negligible subset, we shall restrict our
attention to Xreg.
In what follows, the notation

ffl
A
f dµ means

´
A
f dµ/µ(A). Let z ∈ Xreg

be a point where f is differentiable and Dzf be the differential of f at z,
then

(A.4) Lip(f)(z) = |Dzf | =
1
cn

lim
η↓0

 
Sn−1

|f(expz(ηu))− f(z)|
η

du

where cn = 2/
(
(n− 1)

´ π
0 sinn−2(s) ds

)
.

According to Lebesgue’s theorem, for m-a.e. x ∈ X, it holds

Lip(f)(x) = lim
r↓0

 
B(x,r)

Lip(f)(z) dv(z).
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Thus, using Rademacher’s theorem, we infer from (A.4) that for m-a.e.
x ∈ X,

(A.5)
Lip(f)(x) = lim

r↓0

 
B(x,r)

|Dzf |dv(z)

= lim
r↓0

lim
η↓0

 
B(x,r)×Sn−1

1
cn

|f(expz(ηu))− f(z)|
η

dL(z, u).

By combining the invariance of L under the geodesic flow with the L2-
convergence of fn to f , we get

lim
n→+∞

 
B(x,r)×Sn−1

|f(expz(ηu))− fn(expz(ηu))|dL(z, u)

= lim
n→+∞

 
B(x,r)×Sn−1

|f(z)− fn(z)|dL(z, u) = 0.

The above equality allows us to rewrite (A.5) as 
B(x,r)

|Dzf |dv(z)

= lim
η↓0

lim
n→+∞

 
B(x,r)×Sn−1

1
cn

|fn(expz(ηu))− fn(z)|
η

dL(z, u)

6 lim
η↓0

lim
n→+∞

 
B(x,r)×Sn−1

1
cn

ˆ 1

0
|Dexpz(sηu)fn( ∂

∂s
)| dsdL(z, u)

6 lim
η↓0

lim
n→+∞

ˆ 1

0

 
B(x,r)×Sn−1

1
cn
|Dzfn(u)|dL(z, u)ds

6 lim
η↓0

lim
n→+∞

 
B(x,r)

|Dzfn|dv(z)

6 lim
η↓0

 
B(x,r)

|∇f |∗(z) dv(z) =
 
B(x,r)

|∇f |∗(z) dv(z)(A.6)

where the second inequality follows again from the invariance of L w.r.t.
the geodesic flow and the last one from the weak convergence of Lip(fn) to
|∇f |∗ in L2(X,m). To conclude, we combine (A.5) and (A.6) which gives
the result thanks to Lebesgue’s theorem. �
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