Motivated by recent activity in low-dimensional topology, we provide a new criterion for left-orderability of a group under the assumption that the group is circularly-orderable: A group is left-orderable if and only if is circularly-orderable for all . This implies that every circularly-orderable group which is not left-orderable gives rise to a collection of positive integers that exactly encode the obstruction to left-orderability, which we call the obstruction spectrum. We precisely describe the behaviour of the obstruction spectrum with respect to torsion, and show that this same behaviour can be mirrored by torsion-free groups, whose obstruction spectra are in general more complex.
Motivé par des développements récents en topologie de basse dimension, nous fournissons un nouveau critère pour l’existence d’un ordre à gauche sur un groupe sous l’hypothèse que le groupe admet un ordre circulaire : un groupe est ordannable à gauche si et seulement si peut être ordonné de façon circulaire pour tous les . Cela implique que chaque groupe circulairement ordonné qui n’est pas ordonnable à gauche donne lieu à un ensemble d’entiers strictement positifs qui décrit exactement l’obstruction à l’existence d’un ordre à gauche, ensemble que nous appelons le spectre d’obstruction. Nous décrivons précisément le comportement du spectre d’obstruction par rapport à la torsion du groupe et montrons que ce même comportement peut être reflété par des groupes sans torsion, dont les spectres d’obstruction sont en général plus complexes.
Revised:
Accepted:
Published online:
Keywords: Ordered groups, actions on the circle, 3-manifolds
Mot clés : Groupes ordonnés, actions sur le cercle, 3-variétés
Bell, Jason 1; Clay, Adam 2; Ghaswala, Tyrone 2
@article{AIF_2021__71_1_175_0, author = {Bell, Jason and Clay, Adam and Ghaswala, Tyrone}, title = {Promoting circular-orderability to left-orderability}, journal = {Annales de l'Institut Fourier}, pages = {175--201}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {1}, year = {2021}, doi = {10.5802/aif.3394}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3394/} }
TY - JOUR AU - Bell, Jason AU - Clay, Adam AU - Ghaswala, Tyrone TI - Promoting circular-orderability to left-orderability JO - Annales de l'Institut Fourier PY - 2021 SP - 175 EP - 201 VL - 71 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3394/ DO - 10.5802/aif.3394 LA - en ID - AIF_2021__71_1_175_0 ER -
%0 Journal Article %A Bell, Jason %A Clay, Adam %A Ghaswala, Tyrone %T Promoting circular-orderability to left-orderability %J Annales de l'Institut Fourier %D 2021 %P 175-201 %V 71 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3394/ %R 10.5802/aif.3394 %G en %F AIF_2021__71_1_175_0
Bell, Jason; Clay, Adam; Ghaswala, Tyrone. Promoting circular-orderability to left-orderability. Annales de l'Institut Fourier, Volume 71 (2021) no. 1, pp. 175-201. doi : 10.5802/aif.3394. https://aif.centre-mersenne.org/articles/10.5802/aif.3394/
[1] Space of invariant circular orders of groups, Groups Geom. Dyn., Volume 12 (2018) no. 2, pp. 721-763 | DOI | MR
[2] Mapping class groups and their relationship to braid groups, Commun. Pure Appl. Math., Volume 22 (1969), pp. 213-238 | DOI | MR
[3] On L-spaces and left-orderable fundamental groups, Math. Ann., Volume 356 (2013) no. 4, pp. 1213-1245 | DOI | MR
[4] Taut foliations in branched cyclic covers and left-orderable groups, Trans. Am. Math. Soc., Volume 372 (2019) no. 11, pp. 7921-7957 | DOI | MR | Zbl
[5] Orderable 3-manifold groups, Ann. Inst. Fourier, Volume 55 (2005) no. 1, pp. 243-288 | DOI | MR | Zbl
[6] A note on group rings of certain torsion-free groups, Can. Math. Bull., Volume 15 (1972), pp. 441-445 | DOI | MR | Zbl
[7] Circular groups, planar groups, and the Euler class, Proceedings of the Casson Fest (Geometry and Topology Monographs), Volume 7 (2004), pp. 431-491 | DOI | MR | Zbl
[8] Dynamical forcing of circular groups, Trans. Am. Math. Soc., Volume 358 (2006) no. 8, pp. 3473-3491 | DOI | MR
[9] Laminations and groups of homeomorphisms of the circle, Invent. Math., Volume 152 (2003) no. 1, pp. 149-204 | DOI | MR | Zbl
[10] Non-left-orderable surgeries on twisted torus knots, Proc. Am. Math. Soc., Volume 144 (2016) no. 6, pp. 2683-2696 | DOI | MR | Zbl
[11] Generalizations of the Burns–Hale theorem, Commun. Algebra, Volume 48 (2020) no. 11, pp. 4846-4858 | DOI | MR | Zbl
[12] Free products of circularly-ordered groups with amalgamated subgroup, J. Lond. Math. Soc., II. Ser., Volume 100 (2019) no. 3, pp. 775-803 | DOI | MR | Zbl
[13] Ordered groups and topology, Graduate Studies in Mathematics, 176, American Mathematical Society, 2016, x+154 pages | MR | Zbl
[14] Left-orderable fundamental groups and Dehn surgery, Int. Math. Res. Not. (2013) no. 12, pp. 2862-2890 | DOI | MR | Zbl
[15] Right-ordered groups, Mich. Math. J., Volume 6 (1959), pp. 267-275 | MR | Zbl
[16] Orderability and Dehn filling, Geom. Topol., Volume 22 (2018) no. 3, pp. 1405-1457 | DOI | MR | Zbl
[17] Transverse foliations of Seifert bundles and self-homeomorphism of the circle, Comment. Math. Helv., Volume 56 (1981) no. 4, pp. 638-660 | DOI | MR | Zbl
[18] A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, 2012, xiv+472 pages | MR | Zbl
[19] Groups acting on the circle, Enseign. Math., Volume 47 (2001) no. 3-4, pp. 329-407 | MR | Zbl
[20] The second homology group of the mapping class group of an orientable surface, Invent. Math., Volume 72 (1983) no. 2, pp. 221-239 | DOI | MR | Zbl
[21] Lectures on Seifert manifolds, Brandeis Lecture Notes, 2, Brandeis University, 1983, i+84+27 pages | MR
[22] Rotation numbers of products of circle homeomorphisms, Math. Ann., Volume 271 (1985) no. 3, pp. 381-400 | DOI | MR
[23] A survey of Heegaard Floer homology, New ideas in low dimensional topology (Series on Knots and Everything), Volume 56, World Scientific, 2015, pp. 237-296 | DOI | MR | Zbl
[24] The Nielsen realization problem, Ann. Math., Volume 117 (1983) no. 2, pp. 235-265 | DOI | MR | Zbl
[25] Some invariants of pretzel links, Bull. Aust. Math. Soc., Volume 75 (2007) no. 2, pp. 253-271 | DOI | MR | Zbl
[26] Intersection and union of relatively convex subgroups of orderable groups, Algebra Logika, Volume 7 (1968) no. 3, pp. 48-50 | MR
[27] Right-ordered groups, Siberian School of Algebra and Logic, Consultants Bureau, 1996, x+250 pages | MR | Zbl
[28] Generating the surface mapping class group by two elements, Trans. Am. Math. Soc., Volume 357 (2005) no. 8, pp. 3299-3310 | DOI | MR | Zbl
[29] Amenable groups with a locally invariant order are locally indicable, Groups Geom. Dyn., Volume 8 (2014) no. 2, pp. 467-478 | DOI | MR | Zbl
[30] On the existence of linear order in a group, Bull. Acad. Polon. Sci. Cl. III., Volume 2 (1954), pp. 21-23 | MR | Zbl
[31] Foliations transverse to fibers of Seifert manifolds, Comment. Math. Helv., Volume 69 (1994) no. 1, pp. 155-162 | DOI | MR | Zbl
[32] Left-orderablity for surgeries on -pretzel knots, Topology Appl., Volume 261 (2019), pp. 1-6 | DOI | MR | Zbl
[33] Linear-order on a group, Osaka J. Math., Volume 4 (1952), pp. 17-18 | MR | Zbl
[34] A simple example of a torsion-free, nonunique product group, Bull. Lond. Math. Soc., Volume 20 (1988) no. 4, pp. 302-304 | DOI | MR | Zbl
[35] Mappings of nonzero degree between 3-manifolds: a new obstruction, Advances in topological quantum field theory (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 179, Kluwer Academic Publishers, 2004, pp. 267-273 | DOI | MR | Zbl
[36] On cyclically ordered groups, Fundam. Math., Volume 47 (1959), pp. 161-166 | DOI | MR | Zbl
[37] Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Am. Math. Soc., Volume 6 (1982) no. 3, pp. 357-381 | DOI | MR | Zbl
[38] Ueber die hyperelliptischen Curven and diejenigan vom Geschlechte , welche eindeutigen Transformationen in sich zulassen, Bihang Kongl. Svenska Vetenskaps-Akademiens Handlingar (1895-1896) | Zbl
[39] Cyclically ordered groups, Sib. Mat. Zh., Volume 17 (1976) no. 5, p. 1046-1051, 1197 | MR | Zbl
Cited by Sources: