[Automorphismes quantiques des graphes des cubes pliés]
On démontre que le groupe quantique d’automorphismes du graphe de Clebsch est ce qui répond à une question de Banica, Bichon et Collins de 2007. En général, pour des valeurs impaires de n, le groupe quantique d’automorphisme du graphe du n-cube plié est . En plus, on démontre qu’un graphe possède des symétries quantiques, si son groupe d’automorphismes contient une paire d’automorphismes disjoints.
We show that the quantum automorphism group of the Clebsch graph is . This answers a question by Banica, Bichon and Collins from 2007. More general for odd , the quantum automorphism group of the folded -cube graph is . Furthermore, we show that if the automorphism group of a graph contains a pair of disjoint automorphisms this graph has quantum symmetry.
Révisé le :
Accepté le :
Publié le :
Keywords: finite graphs, graph automorphisms, automorphism groups, quantum automorphisms, quantum groups, quantum symmetries
Mot clés : graphes finis, automorphismes des graphes, groupes d’automorphismes, automorphismes quantiques, groupes quantiques, symétries quantiques
Schmidt, Simon 1
@article{AIF_2020__70_3_949_0, author = {Schmidt, Simon}, title = {Quantum automorphisms of folded cube graphs}, journal = {Annales de l'Institut Fourier}, pages = {949--970}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {3}, year = {2020}, doi = {10.5802/aif.3328}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3328/} }
TY - JOUR AU - Schmidt, Simon TI - Quantum automorphisms of folded cube graphs JO - Annales de l'Institut Fourier PY - 2020 SP - 949 EP - 970 VL - 70 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3328/ DO - 10.5802/aif.3328 LA - en ID - AIF_2020__70_3_949_0 ER -
%0 Journal Article %A Schmidt, Simon %T Quantum automorphisms of folded cube graphs %J Annales de l'Institut Fourier %D 2020 %P 949-970 %V 70 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3328/ %R 10.5802/aif.3328 %G en %F AIF_2020__70_3_949_0
Schmidt, Simon. Quantum automorphisms of folded cube graphs. Annales de l'Institut Fourier, Tome 70 (2020) no. 3, pp. 949-970. doi : 10.5802/aif.3328. https://aif.centre-mersenne.org/articles/10.5802/aif.3328/
[1] Quantum automorphism groups of homogeneous graphs, J. Funct. Anal., Volume 224 (2005) no. 2, pp. 243-280
[2] Higher Orbitals of quizzy quantum group actions (2018) (https://arxiv.org/abs/1807.07231, to appear in Adv. Appl. Math.)
[3] Quantum automorphism groups of vertex-transitive graphs of order , J. Algebr. Comb., Volume 26 (2007) no. 1, pp. 83-105
[4] Quantum groups acting on 4 points, J. Reine Angew. Math., Volume 626 (2009), pp. 75-114
[5] Graphs having no Quantum Symmetry, Ann. Inst. Fourier (2007), pp. 955-971
[6] The hyperoctahedral quantum group, J. Ramanujan Math. Soc., Volume 22 (2007) no. 4, pp. 345-384
[7] Quantum permutation groups: a survey, Noncommutative harmonic analysis with applications to probability (Banach Center Publications), Volume 78, Polish Academy of Sciences, Institute of Mathematics, 2007, pp. 13-34 | Zbl
[8] Hopf-Galois systems, J. Algebra, Volume 264 (2003) no. 2, pp. 565-581
[9] Quantum automorphism groups of finite graphs, Proc. Am. Math. Soc., Volume 131 (2003) no. 3, pp. 665-673
[10] Quantum subgroups of the compact quantum group , Bull. Lond. Math. Soc., Volume 46 (2014) no. 2, pp. 315-328
[11] Twisting algebras using non-commutative torsors: explicit computations, Math. Z., Volume 271 (2012) no. 3-4, pp. 789-818
[12] Nonlocal Games and Quantum Permutation Groups (2017) (https://arxiv.org/abs/1712.01820)
[13] Compact quantum groups and their representation categories, Cours Spécialisés, 20, Société Mathématique de France, 2013 | Zbl
[14] Symmetries of quantum spaces. Subgroups and quotient spaces of quantum and groups, Commun. Math. Phys., Volume 170 (1995) no. 1, pp. 1-20
[15] Hopf bi-Galois extensions, Commun. Algebra, Volume 24 (1996) no. 12, pp. 3797-3825
[16] The Petersen graph has no quantum symmetry, Bull. Lond. Math. Soc., Volume 50 (2018) no. 3, pp. 395-400
[17] Quantum symmetries of Graph C*-algebras, Can. Math. Bull., Volume 61 (2018) no. 4, pp. 848-864
[18] An invitation to quantum groups and duality, EMS Textbooks in Mathematics, European Mathematical Society, 2008
[19] Dual pairs of Hopf -algebras, Bull. Lond. Math. Soc., Volume 25 (1993) no. 3, pp. 209-230 | Zbl
[20] Quantum symmetry groups of finite spaces, Commun. Math. Phys., Volume 195 (1998) no. 1, pp. 195-211
[21] Compact matrix pseudogroups, Commun. Math. Phys., Volume 111 (1987) no. 4, pp. 613-665 | Zbl
[22] A remark on compact matrix quantum groups, Lett. Math. Phys., Volume 21 (1991) no. 1, pp. 35-39
Cité par Sources :