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QUANTUM AUTOMORPHISMS OF FOLDED CUBE
GRAPHS

by Simon SCHMIDT (*)

Abstract. — We show that the quantum automorphism group of the Clebsch
graph is SO−1

5 . This answers a question by Banica, Bichon and Collins from 2007.
More general for odd n, the quantum automorphism group of the folded n-cube
graph is SO−1

n . Furthermore, we show that if the automorphism group of a graph
contains a pair of disjoint automorphisms this graph has quantum symmetry.
Résumé. — On démontre que le groupe quantique d’automorphismes du graphe

de Clebsch est SO−1
5 ce qui répond à une question de Banica, Bichon et Collins de

2007. En général, pour des valeurs impaires de n, le groupe quantique d’automor-
phisme du graphe du n-cube plié est SO−1

n . En plus, on démontre qu’un graphe
possède des symétries quantiques, si son groupe d’automorphismes contient une
paire d’automorphismes disjoints.

Introduction

The concept of quantum automorphism groups of finite graphs was intro-
duced by Banica and Bichon in [1, 9]. It generalizes the classical automor-
phism groups of graphs within the framework of compact matrix quantum
groups. We say that a graph has no quantum symmetry if the quantum
automorphism group coincides with its usual automorphism group. A nat-
ural question is: When does a graph have no quantum symmetry? This
has been studied in [5] for some graphs on p vertices, p prime, and more
recently the author showed in [16] that the Petersen graph does not have
quantum symmetry. Also Lupini, Mančinska and Roberson proved that al-
most all graphs have trivial quantum automorphim group in [12], which
implies that almost all graphs do not have quantum symmetry.

Keywords: finite graphs, graph automorphisms, automorphism groups, quantum auto-
morphisms, quantum groups, quantum symmetries.
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950 Simon SCHMIDT

In this article we develop a tool for detecting quantum symmetries namely
we show that a graph has quantum symmetry if its automorphism group
contains a pair of disjoint automorphisms (Theorem 2.2). As an example,
we apply it to the Clebsch graph and obtain that it does have quantum
symmetry (Corollary 3.2).

We even go further and prove that the quantum automorphism group of
the Clebsch graph is SO−1

5 , the q-deformation at q = −1 of SO5, answering
a question from [7]. For this we use the fact that the Clebsch graph is the
folded 5-cube graph. This can be pushed further to more general folded
n-cube graphs: In [6], two generalizations of the hyperoctahedral group
Hn are given, one of them being O−1

n as quantum symmetry group of the
hypercube graph. To prove that O−1

n is the quantum symmetry group of
the hypercube graph, Banica, Bichon and Collins used the fact that the
hypercube graph is a Cayley graph. It is also well known that the folded
cube graph is a Cayley graph. We use similar techniques as in [6] to show
that for odd n, the quantum symmetry group of the folded n-cube graph is
SO−1

n which is the quotient of O−1
n by some quantum determinant condition

(Theorem 5.9). This constitutes our main result.
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1. Preliminaries

1.1. Compact matrix quantum groups

We start with the definition of compact matrix quantum groups which
were defined by Woronowicz [21, 22] in 1987. See [13, 18] for recent books
on compact quantum groups.

Definition 1.1. — A compact matrix quantum group G is a pair
(C(G), u), where C(G) is a unital (not necessarily commutative) C∗-algebra
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QUANTUM AUTOMORPHISMS OF FOLDED CUBE GRAPHS 951

which is generated by uij , 1 6 i, j 6 n, the entries of a matrix u ∈
Mn(C(G)). Moreover, the *-homomorphism ∆ : C(G) → C(G) ⊗ C(G),
uij 7→

∑n
k=1 uik ⊗ ukj must exist, and u and its transpose ut must be

invertible.

An important example of a compact matrix quantum group is the quan-
tum symmetric group S+

n due to Wang [20]. It is the compact matrix quan-
tum group, where

C(S+
n ) := C∗

(
uij , 1 6 i, j 6 n

∣∣∣∣∣uij = u∗ij = u2
ij ,
∑
l

uil =
∑
l

uli = 1
)
.

An action of a compact matrix quantum group on a C∗-algebra is defined
as follows [14, 20].

Definition 1.2. — Let G = (C(G), u) be a compact matrix quantum
group and let B be a C∗-algebra. A (left) action of G on B is a unital
*-homomorphism α : B → B ⊗ C(G) such that

(1) (id⊗∆) ◦ α = (α⊗ id) ◦ α
(2) α(B)(1⊗ C(G)) is linearly dense in B ⊗ C(G).

In [20], Wang showed that S+
n is the universal compact matrix quantum

group acting on Xn = {1, . . . , n}. This action is of the form α : C(Xn) →
C(Xn)⊗ C(S+

n ),

α(ei) =
∑
j

ej ⊗ uji.

1.2. Quantum automorphism groups of finite graphs

In 2005, Banica [1] gave the following definition of a quantum automor-
phism group of a finite graph.

Definition 1.3. — Let Γ = (V,E) be a finite graph with n vertices
and adjacency matrix ε ∈ Mn({0, 1}). The quantum automorphism group
G+

aut(Γ) is the compact matrix quantum group (C(G+
aut(Γ)), u), where

C(G+
aut(Γ)) is the universal C∗-algebra with generators uij , 1 6 i, j 6 n

and relations

uij = u∗ij = u2
ij 1 6 i, j 6 n,(1.1)

n∑
l=1

uil = 1 =
n∑
l=1

uli, 1 6 i 6 n,(1.2)

uε = εu,(1.3)

where (1.3) is nothing but
∑
k uikεkj =

∑
k εikukj .
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952 Simon SCHMIDT

Remark 1.4. — There is another definition of a quantum automorphism
group of a finite graph by Bichon in [9], which is a quantum subgroup of
G+

aut(Γ). But this article concerns G+
aut(Γ). See [17] for more on quantum

automorphism groups of graphs.

The next definition is due to Banica and Bichon [3]. We denote by
Gaut(Γ) the usual automorphism group of a graph Γ.

Definition 1.5. — Let Γ = (V,E) be a finite graph. We say that Γ has
no quantum symmetry if C(G+

aut(Γ)) is commutative, or equivalently

C(G+
aut(Γ)) = C(Gaut(Γ)).

If C(G+
aut(Γ)) is non-commutative, we say that Γ has quantum symmetry.

Note that Gaut(Γ) ⊆ G+
aut(Γ), so in general a graph Γ has more quantum

symmetries than symmetries.

1.3. Compact matrix quantum groups acting on graphs

An action of a compact matrix quantum group on a graph is an action on
the functions on the vertices, but with additional structure. This concept
was introduced by Banica and Bichon [1, 9].

Definition 1.6. — Let Γ = (V,E) be a finite graph andG be a compact
matrix quantum group. An action of G on Γ is an action of G on C(V ) such
that the magic unitary matrix (vij)16i,j6|V | associated to the formular

α(ei) =
|V |∑
j=1

ej ⊗ vji

commutes with the adjacency matrix, i.e vε = εv.

Remark 1.7. — If G acts on a graph Γ, then we have a surjective
*-homomorphism ϕ : C(G+

aut(Γ))→ C(G), u 7→ v.

The following theorem shows that commutation with the magic unitary
u yields invariant subspaces.

Theorem 1.8 ([1, Theorem 2.3]). — Let α : C(Xn)→ C(Xn)⊗ C(G),
α(ei) =

∑
j ej ⊗ vji be an action, where G is a compact matrix quantum

group and let K be a linear subspace of C(Xn). The matrix (vij) commutes
with the projection onto K if and only if α(K) ⊆ K ⊗ C(G).

ANNALES DE L’INSTITUT FOURIER
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Looking at the spectral decomposition of the adjacency matrix, we see
that this action preserves the eigenspaces of the adjacency matrix.

Corollary 1.9. — Let Γ = (V,E) be an undirected finite graph with
adjacency matrix ε. The action α : C(V ) → C(V ) ⊗ C(G+

aut(Γ)), α(ei) =∑
j ej ⊗ uji, preserves the eigenspaces of ε, i.e. α(Eλ) ⊆ Eλ ⊗ C(G+

aut(Γ))
for all eigenspaces Eλ.

Proof. — It follows from the spectral decomposition that every projec-
tion PEλ onto Eλ is a polynomial in ε. Thus it commutes with the funda-
mental corepresentation u and Theorem 1.8 yields the assertion. �

1.4. Fourier transform

One can obtain a C∗-algebra from the group Zn2 by either considering
the continuous functions C(Zn2 ) over the group or the group C∗-algebra
C∗(Zn2 ). Since Zn2 is abelian, we know that C(Zn2 ) ∼= C∗(Zn2 ) by Pontryagin
duality. This isomorphism is given by the Fourier transform and its inverse.
We write

Zn2 = {ti11 . . . tinn |i1, . . . , in ∈ {0, 1}},

C(Zn2 ) = span(e
t
i1
1 ...tinn

| ti11 . . . tinn ∈ Zn2 ),

C∗(Zn2 ) = C∗(t1, . . . , tn | ti = t∗i , t
2
i = 1, titj = tjti),

where

e
t
i1
1 ...tinn

: Zn2 → C, e
t
i1
1 ...tinn

(tj1
1 . . . tjnn ) = δi1j1 . . . δinjn .

The proof of the following proposition can be found in [2] for example.

Proposition 1.10. — The *-homomorphisms

ϕ : C(Zn2 )→ C∗(Zn2 ), e
t
i1
1 ...tinn

→ 1
2n

1∑
j1,...,jn=0

(−1)i1j1+···+injntj1
1 . . . tjnn

and

ψ : C∗(Zn2 )→ C(Zn2 ), ti11 . . . tinn →
1∑

j1,...,jn=0
(−1)i1j1+···+injne

t
j1
1 ...tjnn

,

where i1, . . . , in ∈ {0, 1}, are inverse to each other. The map ϕ is called
Fourier transform, the map ψ is called inverse Fourier transform.

TOME 70 (2020), FASCICULE 3



954 Simon SCHMIDT

2. A criterion for a graph to have quantum symmetry

In this section, we show that a graph has quantum symmetry if the
automorphism group of the graph contains a certain pair of permutations.
For this we need the following definition.

Definition 2.1. — Let V = {1, . . . , r}. We say that two permutations
σ : V → V and τ : V → V are disjoint, if σ(i) 6= i implies τ(i) = i and vice
versa, for all i ∈ V .

Theorem 2.2. — Let Γ = (V,E) be a finite graph without multiple
edges. If there exist two non-trivial, disjoint automorphisms σ, τ ∈ Gaut(Γ),
ord(σ) = n, ord(τ) = m, then we get a surjective *-homomorphism ϕ :
C(G+

aut(Γ)) → C∗(Zn ∗ Zm). In particular, Γ has quantum symmetry if
n,m > 2.

Proof. — Let σ, τ ∈ Gaut(Γ) be non-trivial disjoint automorphisms with
ord(σ) = n, ord(τ) = m. Define

A := C∗

(
p1, . . . , pn, q1, . . . , qm

∣∣∣∣∣ pk = p∗k = p2
k,

ql = q∗l = q2
l ,

n∑
k=1

pk = 1 =
m∑
l=1

ql

)
∼= C∗(Zn ∗ Zm).

We want to use the universal property to get a surjective *-homomorphism
ϕ : C(G+

aut(Γ)) → A. This yields the non-commutativity of G+
aut(Γ), since

pk, ql do not have to commute. In order to do so, define

u′ :=
m∑
l=1

τ l ⊗ ql +
n∑
k=1

σk ⊗ pk − idMr(C)⊗A ∈ Mr(C)⊗A ∼= Mr(A),

where τ l, σk denote the permutation matrices corresponding to τ l, σk ∈
Gaut(Γ). This yields

u′ij =
m∑
l=1

δjτ l(i) ⊗ ql +
n∑
k=1

δjσk(i) ⊗ pk − δij ∈ C⊗A ∼= A.

Now, we show that u′ does fulfill the relations of u ∈ Mr(C) ⊗ A, the
fundamental representation of G+

aut(Γ). Since we have τ l, σk ∈ Gaut(Γ), it
holds τ lε = ετ l and σkε = εσk for all 1 6 l 6 m, 1 6 k 6 n, where ε
denotes the adjacency matrix of Γ. Therefore, we have

u′(ε⊗ 1) =
(

m∑
l=1

τ l ⊗ ql +
n∑
k=1

σk ⊗ pk − idMr(C)⊗A

)
(ε⊗ 1)

=
m∑
l=1

τ lε⊗ ql +
n∑
k=1

σkε⊗ pk − (ε⊗ 1)

ANNALES DE L’INSTITUT FOURIER
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=
m∑
l=1

ετ l ⊗ ql +
n∑
k=1

εσk ⊗ pk − (ε⊗ 1)

= (ε⊗ 1)
(

m∑
l=1

τ l ⊗ ql +
n∑
k=1

σk ⊗ pk − idMr(C)⊗A

)
= (ε⊗ 1)u′.

Furthermore, it holds
r∑
i=1

u′ji =
r∑
i=1

(
m∑
l=1

δiτ l(j) ⊗ ql +
n∑
k=1

δiσk(j) ⊗ pk

)
− 1⊗ 1

= 1⊗
(

m∑
l=1

ql

)
+ 1⊗

(
n∑
k=1

pk

)
− 1⊗ 1

= 1⊗ 1.

A similar computation shows
∑r
i=1 u

′
ij = 1⊗ 1. Since τ and σ are disjoint,

we have

u′ij =
m∑
l=1

δjτ l(i) ⊗ ql +
n∑
k=1

δjσk(i) ⊗ pk − δij =


∑
k∈Nij pk, if σ(i) 6= i∑
l∈Mij

ql, if τ(i) 6= i

δij , otherwise,

where Nij = {k ∈ {1, . . . , n}; σk(i) = j},Mij = {l ∈ {1, . . . ,m}; τ l(i) = j}.
Thus, all entries of u′ are projections. By the universal property, we get a
*-homomorphism ϕ : C(G+

aut(Γ))→ A, u 7→ u′.

It remains to show that ϕ is surjective. We know ord(σ) = n. By de-
composing σ into a product of disjoint cycles, we see that there exist
s1, . . . , sa ∈ V such that for all k1 6= k2, k1, k2 ∈ {1, . . . , n}, we have

(σk1(s1), . . . , σk1(sa)) 6= (σk2(s1), . . . , σk2(sa)).

By similar considerations, there exist t1, . . . , tb ∈ V such that

(τ l1(t1), . . . , τ l1(tb)) 6= (τ l2(t1), . . . , τ l2(tb))

for l1 6= l2, l1, l2 ∈ {1, . . . ,m}. Therefore, we have

ϕ(us1σk(s1) . . . usaσk(sa) = u′s1σk(s1) . . . u
′
saσk(sa) = pk,

ϕ(ut1τ l(t1) . . . utbτ l(tb)) = u′t1τ l(t1) . . . u
′
tbτ l(tb) = ql

for all k ∈ {1, . . . , n}, l ∈ {1, . . . ,m} and since A is generated by pk and ql,
ϕ is surjective. �

TOME 70 (2020), FASCICULE 3
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Remark 2.3. — Let K4 be the full graph on 4 points. We know that
Gaut(K4) = S4 and G+

aut(K4) = S+
4 . We have disjoint automorphisms in

S4, where for example σ = (12), τ = (34) ∈ S4 give us the well known
surjective *-homomorphism

ϕ : C(S+
4 )→ C∗(p, q | p = p∗ = p2, q = q∗ = q2),

u 7→


p 1− p 0 0

1− p p 0 0
0 0 q 1− q
0 0 1− q q

 ,

yielding the non-commutativity of S+
4 .

Remark 2.4. — Let Γ = (V,E) be a finite graph without multiple edges,
where there exist two non-trivial, disjoint automorphisms σ, τ ∈ Gaut(Γ).
To show that Γ has quantum symmetry it is enough to see that we have
the surjective *-homomorphism

ϕ′ : C(G+
aut(Γ))→ C∗(p, q | p = p∗ = p2, q = q∗ = q2),

u 7→ σ ⊗ p+ τ ⊗ q + idMr(C)⊗(1− q − p).

Remark 2.5. — At the moment, we do not have an example of a graph Γ,
where Gaut(Γ) does not contain two disjoint automorphisms but the graph
has quantum symmetry.

3. The Clebsch graph has quantum symmetry

As an application of Theorem 2.2, we show that the Clebsch graph does
have quantum symmetry. In Section 5, we will study the quantum auto-
morphism group of this graph:

Figure 3.1. The Clebsch graph

ANNALES DE L’INSTITUT FOURIER
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Proposition 3.1. — The Clebsch graph has disjoint automorphisms.

Proof. — We label the graph as follows
1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

Then we get two non-trivial disjoint automorphisms of this graph

σ = (2 3)(6 7)(10 11)(14 15),
τ = (1 4)(5 8)(9 12)(13 16). �

Corollary 3.2. — The Clebsch graph does have quantum symmetries,
i.e. C(G+

aut(ΓClebsch)) is non-commutative.

Proof. — By Theorem 2.2, we get that C(G+
aut(ΓClebsch)) is non-commu-

tative. Looking at the proof of Theorem 2.2, we get the surjective *-
homomorphism ϕ : C(G+

aut(ΓClebsch)) → C∗(p, q | p = p∗ = p2, q = q∗

= q2),

u 7→ u′ =


u′′ 0 0 0
0 u′′ 0 0
0 0 u′′ 0
0 0 0 u′′

 ,

where

u′′ =


q 0 0 1− q
0 p 1− p 0
0 1− p p 0

1− q 0 0 q

 . �

Remark 3.3.
(1) The Clebsch graph is the folded 5-cube graph, which will be in-

troduced in Section 5. There we will study the quantum automor-
phism group for (2m+1)-folded cube graphs going far beyond Corol-
lary 3.2.

TOME 70 (2020), FASCICULE 3
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(2) Using Theorem 2.2, it is also easy to see that the folded cube graphs
have quantum symmetry, but this will also follow from our main
result (Theorem 5.9).

4. The quantum group SO−1
n

Now, we will have a closer look at the quantum group SO−1
n , but first

we define O−1
n , which appeared in [6] as the quantum automorphism group

of the hypercube graph. For both it is immediate to check that the comul-
tiplication ∆ is a *-homomorphism.

Definition 4.1. — We define O−1
n to be the compact matrix quantum

group (C(O−1
n ), u), where C(O−1

n ) is the universal C∗-algebra with gener-
ators uij , 1 6 i, j 6 n and relations

uij = u∗ij , 1 6 i, j 6 n,(4.1)
n∑
k=1

uikujk =
n∑
k=1

ukiukj = δij , 1 6 i, j 6 n,(4.2)

uijuik = −uikuij , ujiuki = −ukiuji, k 6= j,(4.3)
uijukl = ukluij , i 6= k, j 6= l.(4.4)

For n = 3, SO−1
n appeared in [4], where Banica and Bichon showed

SO−1
3 = S+

4 . Our main result in this paper is that for n odd, SO−1
n is the

quantum automorphism group of the folded n-cube graph.

Definition 4.2. — We define SO−1
n to be the compact matrix quantum

group (C(SO−1
n ), u), where C(SO−1

n ) is the universal C∗-algebra with gen-
erators uij , 1 6 i, j 6 n, Relations (4.1)–(4.4) and∑

σ∈Sn

uσ(1)1 . . . uσ(n)n = 1.(4.5)

Lemma 4.3. — Let (uij)16i,j6n be the generators of C(SO−1
n ). Then∑

σ∈Sn

uσ(1)1 . . . uσ(n−1)n−1uσ(n)k = 0

for k 6= n.

Proof. — Let 1 6 k 6 n− 1. Using Relations (4.3) and (4.4) we get

uσ(1)1 . . . uσ(k)k . . . uσ(n−1)n−1uσ(n)k

= −uσ(1)1 . . . uσ(n)k . . . uσ(n−1)n−1uσ(k)k

= −uτ(1)1 . . . uτ(k)k . . . uτ(n−1)n−1uτ(n)k

ANNALES DE L’INSTITUT FOURIER
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for τ = σ ◦ (k n) ∈ Sn. Therefore the summands corresponding to σ and τ
sum up to zero. The result is then clear. �

The next lemma gives an equivalent formulation of Relation (4.5). One
direction is a special case of [19, Lemma 4.6].

Lemma 4.4. — Let A be a C∗-algebra and let uij ∈ A be elements that
fulfill Relations (4.1)–(4.4). Let j ∈ {1, . . . , n} and define

Ij = {(i1, . . . , in−1) ∈ {1, . . . , n}n−1 | ia 6= ib for a 6= b, is 6= j for all s}.

The following are equivalent

(1) We have

1 =
∑
σ∈Sn

uσ(1)1 . . . uσ(n)n.

(2) It holds

ujn =
∑

(i1,...,in−1)∈Ij

ui11 . . . uin−1n−1, 1 6 j 6 n.

Proof. — We first show that (2) implies (1). It holds

1 =
n∑
j=1

u2
jn =

n∑
j=1

∑
(i1,...,in−1)∈Ij

ui11 . . . uin−1n−1ujn,

where we used Relation (4.2) and (2). Furthermore, we have

n∑
j=1

∑
(i1,...,in−1)∈Ij

ui11 . . . uin−1n−1ujn =
∑

i1,...,in;
ia 6=ib for a 6=b

ui11 . . . uinn

=
∑
σ∈Sn

uσ(1)1 . . . uσ(n)n

and thus (2) implies (1).
Now we show that (1) implies (2). We have

ujn =
∑
σ∈Sn

uσ(1)1 . . . uσ(n)nujn =
n∑
k=1

∑
σ∈Sn

uσ(1)1 . . . uσ(n−1)n−1uσ(n)kujk,

TOME 70 (2020), FASCICULE 3
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since
∑
σ∈Sn uσ(1)1 . . . uσ(n−1)n−1uσ(n)kujk = 0 for k 6= n by Lemma 4.3.

We get
n∑
k=1

∑
σ∈Sn

uσ(1)1 . . . uσ(n−1)n−1uσ(n)kujk

=
∑
σ∈Sn

uσ(1)1 . . . uσ(n−1)n−1

n∑
k=1

uσ(n)kujk

=
∑
σ∈Sn

uσ(1)1 . . . uσ(n−1)n−1δσ(n)j

=
∑

(i1,...,in−1)∈Ij

ui11 . . . uin−1n−1,

where we used Relation (4.2) and we obtain

ujn =
∑

(i1,...,in−1)∈Ij

ui11 . . . uin−1n−1. �

We now discuss representations of SO−1
2m+1. For definitions and back-

ground for this proposition, we refer to [8, 10, 15].

Proposition 4.5. — The category of corepresentations of SO−1
2m+1 is

tensor equivalent to the category of representations of SO2m+1.

Proof. — We first show that C(SO−1
2m+1) is a cocycle twist of C(SO2m+1)

by proceeding like in [10, Section 4]. Take the unique bicharacter σ : Z2m
2 ×

Z2m
2 → {±1} with

σ(ti, tj) = −1 = −σ(tj , ti), for 1 6 i < j 6 2m,
σ(ti, ti) = (−1)m, for 1 6 i 6 2m+ 1,

σ(ti, t2m+1) = (−1)m−i = −σ(t2m+1, ti), for 1 6 i 6 2m,

where we use the identification

Z2m
2 = 〈t1, . . . , t2m+1 | t2i = 1, titj = tjti, t2m+1 = t1 . . . t2m〉.

Let H be the subgroup of diagonal matrices in SO2m+1 having ±1 entries.
We get a surjective *-homomorphism

π : C(SO2m+1)→ C∗(Z2m
2 )

uij 7→ δijti

by restricting the functions on SO2m+1 to H and using Fourier transform.
Thus we can form the twisted algebra C(SO2m+1)σ, where we have the
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multiplication

[uij ][ukl] = σ(ti, tk)σ−1(tj , tl)[uijukl] = σ(ti, tk)σ(tj , tl)[uijukl].

We see that the generators [uij ] of C(SO2m+1)σ fulfill the same relations
as the generators of C(SO−1

2m+1) and thus we get an surjective *-homomo-
rphism ϕ : C(SO−1

2m+1) → C(SO2m+1)σ, uij 7→ [uij ]. This is an isomor-
phism for example by using Theorem 3.5 of [11]. Now, Corollary 1.4 and
Proposition 2.1 of [8] yield the assertion. �

5. Quantum automorphism groups of folded cube graphs

In what follows, we will introduce folded cube graphs FQn and show
that for odd n, the quantum automorphism group of FQn is SO−1

n .

5.1. The folded n-cube graph FQn

Definition 5.1. — The folded n-cube graph FQn is the graph with ver-
tex set V = {(x1, . . . , xn−1) |xi ∈ {0, 1}}, where two vertices (x1, . . . , xn−1)
and (y1, . . . , yn−1) are connected if they differ at exactly one position or if
(y1, . . . , yn−1) = (1− x1, . . . , 1− xn−1).

Remark 5.2. — To justify the name, one can obtain the folded n-cube
graph by identifing every opposite pair of vertices from the n-hypercube
graph.

5.2. The folded cube graph as Cayley graph

It is known that the folded cube graphs are Cayley graphs, we recall this
fact in the next lemma.

Lemma 5.3. — The folded n-cube graph FQn is the Cayley graph of
the group Zn−1

2 = 〈t1, . . . tn〉, where the generators ti fulfill the relations
t2i = 1, titj = tjti, tn = t1 . . . tn−1.

Proof. — Consider the Cayley graph of Zn−1
2 = 〈t1, . . . tn〉. The vertices

are elements of Zn−1
2 , which are products of the form g = ti11 . . . t

in−1
n−1 . The

exponents are in one to one correspondence to (x1, . . . , xn−1), xi ∈ {0, 1},
thus the vertices of the Cayley graph are the vertices of the folded n-cube
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graph. The edges of the Cayley graph are drawn between vertices g, h,
where g = hti for some i. For k ∈ {1, . . . , n − 1}, the operation h → htk
changes the k-th exponent to 1− ik, so we get edges between vertices that
differ at exactly one expontent. The operation h → htn takes tj1

1 . . . t
jn−1
n−1

to t1−j1
1 . . . t

1−jn−1
n−1 , thus we get the remaining edges of FQn. �

5.3. Eigenvalues and Eigenvectors of FQn

We will now discuss the eigenvalues and eigenvectors of the adjacency
matrix of FQn.

Lemma 5.4. — The eigenvectors and corresponding eigenvalues of FQn
are given by

wi1...in−1 =
1∑

j1,...,jn−1=0
(−1)i1j1+···+in−1jn−1e

t
j1
1 ...t

jn−1
n−1

λi1...in−1 = (−1)i1 + · · ·+ (−1)in−1 + (−1)i1+···+in−1 ,

when the vector space spanned by the vertices of FQn is identified with
C(Zn−1

2 ).

Proof. — Let ε be the adjacency matrix of FQn. Then we know for a
vertex p and a function f on the vertices that

εf(p) =
∑

q;(q,p)∈E

f(q).

This yields

εe
t
j1
1 ...t

jn−1
n−1

=
n∑
k=1

e
tkt

j1
1 ...t

jn−1
n−1

= e
t
j1+1
1 ...t

jn−1
n−1

+ · · ·+ e
t
j1
1 ...t

jn−1+1
n−1

+ e
t
j1+1
1 ...t

jn−1+1
n−1

.

For the vectors in the statement we get

εwi1...in−1 =
∑

j1,...,jn−1

(−1)i1j1+···+in−1jn−1εe
t
j1
1 ...t

jn−1
n−1

=
n−1∑
s=1

∑
j1,...,jn−1

(−1)i1j1+···+in−1jn−1e
t
j1
1 ...tjs+1

s ...t
jn−1
n−1

+
∑

j1,...,jn−1

(−1)i1j1+···+in−1jn−1e
t
j1+1
1 ...t

jn−1+1
n−1

.
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Using the index shift j′s = js + 1 mod 2, for s ∈ {1, . . . n− 1}, we get

εwi1...in−1 =
n−1∑
s=1

∑
j1,...j′s,...jn−1

(−1)i1j1+···+is(j′s+1)+···+in−1jn−1e
t
j1
1 ...t

j′s
s ...t

jn−1
n−1

+
∑

j′1,...,j
′
n−1

(−1)i1(j′1+1)+···+in−1(j′n−1+1)e
t
j′1
1 ...t

j′
n−1
n−1

=
n−1∑
s=1

∑
j1,...,j′s,...,jn−1

(−1)is(−1)i1j1+···+in−1jn−1e
t
j1
1 ...t

j′s
s ...t

jn−1
n−1

+
∑

j′1,...,j
′
n−1

(−1)i1+···+in−1(−1)i1j
′
1+···+in−1j

′
n−1e

t
j′1
1 ...t

j′
n−1
n−1

= ((−1)i1 + · · ·+ (−1)in−1 + (−1)i1+···+in−1)wi1...in−1

= λi1...in−1wi1...in−1 .

Since those are 2n−1 vectors that are linearly independent, the assertion
follows. �

The following lemma shows what the eigenvectors look like if we identify
the vector space spanned by the vertices of FQn with C∗(Zn−1

2 ).

Lemma 5.5. — In C∗(Zn−1
2 ) = C∗(t1, . . . , tn | t2i = 1, titj = tjti, tn =

t1 . . . tn−1) the eigenvectors of FQn are

pwi1...in−1 = ti11 . . . t
in−1
n−1

corresponding to the eigenvalues λi1...in−1 from Lemma 5.4.

Proof. — We obtain pwi1...in−1 by using the Fourier transform (see Sec-
tion 1.4) on wi1...in−1 from Lemma 5.4. �

Note that certain eigenvalues in Lemma 5.4 coincide. We get a better
description of the eigenvalues and eigenspaces of FQn in the next lemma.

Lemma 5.6. — The eigenvalues of FQn are given by λk = n − 2k for
k ∈ 2Z∩ {0, . . . , n}. The eigenvectors ti11 . . . t

in−1
n−1 corresponding to λk have

word lengths k or k − 1 and form a basis of Eλk . Here Eλk denotes the
eigenspace to the eigenvalue λk.

Proof. — Let k ∈ 2Z∩{0, . . . , n}. By Lemma 5.4 and Lemma 5.5, we get
that an eigenvector ti11 . . . t

in−1
n−1 of word length k (here k 6= n, if n is even)

with respect to t1, . . . , tn−1 corresponds to the eigenvalue

(−1)i1 + · · ·+ (−1)in−1 + (−1)i1+···+in−1 = −k + (n− 1− k) + 1 = n− 2k.
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Now consider an eigenvector ti11 . . . t
in−1
n−1 of word length k− 1. Then we get

the eigenvalue

(−1)i1 + · · ·+ (−1)in−1 + (−1)i1+···+in−1

= −(k − 1) + (n− k)− 1 = n− 2k.

We go through all the eigenvectors of Lemma 5.5 in this way and we ob-
tain exactly the eigenvalues λk = n − 2k. Since the eigenvectors of word
lengths k or k− 1 are exactly those corresponding to λk, they form a basis
of Eλk . �

5.4. The quantum automorphism group of FQ2m+1

For the rest of this section, we restrict to the folded n-cube graphs, where
n = 2m+ 1 is odd. We show that in this case, the quantum automorphism
group is SO−1

n . We need the following lemma.

Lemma 5.7. — Let τ1, . . . , τn be generators of C∗(Zn−1
2 ) with τ2

i =
1, τiτj = τjτi, τn = τ1 . . . τn−1 and let A be a C∗-algebra with elements
uij ∈ A fulfilling Relations (4.1)–(4.4). Let (i1, . . . , il) ∈ {1, . . . , n}l with
ia 6= ib for a 6= b, where 1 6 l 6 n. Then

n∑
j1,...,jl=1

τj1 . . . τjl ⊗ uj1i1 . . . ujlil =
∑

j1,...,jl;
ja 6=jb for a 6=b

τj1 . . . τjl ⊗ uj1i1 . . . ujlil .

Proof. — Let js = js+1 = k and let the remaining jl be arbitrary. Sum-
ming over k, we get

n∑
k=1

τj1 . . . τjs−1τ
2
k τjs+2 . . . τjl ⊗ uj1i1 . . . ukisukis+1 . . . ujlil

= τj1 . . . τjs−1τjs+2 . . . τjl ⊗ uj1i1 . . .

(
n∑
k=1

ukisukis+1

)
. . . ujlil

= 0

by Relation (4.2) since is 6= is+1. Doing this for all s ∈ {1, . . . , l−1} we get
n∑

j1,...,jl=1
τj1 . . . τjl ⊗ uj1i1 . . . ujlil =

∑
j1 6=···6=jl

τj1 . . . τjl ⊗ uj1i1 . . . ujlil .
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Now, let js = js+2 = k and let j1 6= · · · 6= jl. Since k = js 6= js+1 and
ia 6= ib for a 6= b, we have ukisujs+1is+1 = ujs+1is+1ukis . We also know that
τkτjs+1 = τjs+1τk and thus
n∑
k=1

τj1 . . . τjs−1τkτjs+1τkτjs+3 . . . τjl ⊗ uj1i1 . . . ukisujs+1is+1ukis+2 . . . ujlil

= τj1 . . . τjs−1τjs+1τjs+3 . . . τjl ⊗ uj1i1 . . . ujs+1is+1

(
n∑
k=1

ukisukis+2

)
. . . ujlil

= 0

by Relation (4.2) since is 6= is+2. This yields
n∑

j1,...,jl=1
τj1 . . . τjl ⊗ uj1i1 . . . ujlil

=
∑

j1,...,jl;
ja 6=jb for 0<|a−b|62

τj1 . . . τjl ⊗ uj1i1 . . . ujlil

The assertion follows after iterating this argument l times. �

We first show that SO−1
n acts on the folded n-cube graph.

Lemma 5.8. — For n odd, the quantum group SO−1
n acts on FQn.

Proof. — We need to show that there exists an action

α : C(VFQn)→ C(VFQn)⊗ C(SO−1
n ), α(ei) =

|VFQn |∑
j=1

ej ⊗ vji

such that (vij) commutes with the adjacency matrix of FQn. By Fourier
transform, this is the same as getting an action

α : C∗(Zn−1
2 )→ C∗(Zn−1

2 )⊗ C(SO−1
n ),

where we identify the functions on the vertex set of FQn with C∗(Zn−1
2 ).

We claim that

α(τi) =
n∑
j=1

τj ⊗ uji

gives the answer, where

τi = t1 . . . qti . . . tn−1 for 1 6 i 6 n− 1, τn = tn

for ti as in Lemma 5.5 and (uij) is the fundamental corepresentation of
SO−1

n . Here qti means that ti is not part of the product. These τi generate
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C∗(Zn−1
2 ), with relations τi = τ∗i , τ

2
i = 1, τiτj = τjτi and τn = τ1 . . . τn−1.

Define

τ ′i =
n∑
j=1

τj ⊗ uji.

To show that α defines a *-homomorphism, we have to show that the
relations of the generators τi also hold for τ ′i . It is obvious that (τ ′i)∗ = τ ′i .
Using Relations (4.2)–(4.4) it is straightforward to check that (τ ′i)2 = 1
and τ ′iτ ′j = τ ′jτ

′
i . Now, we show τ ′n = τ ′1 . . . τ

′
n−1. By Lemma 5.7, it holds

τ ′1 . . . τ
′
n−1 =

∑
i1,...,in−1;

ia 6=ib for a 6=b

τi1 . . . τin−1 ⊗ ui11 . . . uin−1n−1

=
n∑
j=1

∑
(i1,...,in−1)∈Ij

τi1 . . . τin−1 ⊗ ui11 . . . uin−1n−1,

where

Ij = {(i1, . . . , in−1) ∈ {1, . . . , n}n−1 | ia 6= ib for a 6= b, is 6= j for all s}

like in Lemma 4.4. For all (i1, . . . , in−1) ∈ Ij , we know that τi1 . . . τin−1 =
τ1 . . . qτj . . . τn. Using τn = τ1 . . . τn−1 and τ2

i = 1, we get τ1 . . . qτj . . . τn = τj
and thus

n∑
j=1

∑
(i1,...,in−1)∈Ij

τi1 . . . τin−1 ⊗ ui11 . . . uin−1n−1

=
n∑
j=1

τj ⊗ ∑
(i1,...,in−1)∈Ij

ui11 . . . uin−1n−1

 .

The equivalent formulation of Relation (4.5) in Lemma 4.4 yields

τ ′1 . . . τ
′
n−1 =

n∑
j=1

τj ⊗ ∑
(i1,...,in−1)∈Ij

ui11 . . . uin−1n−1


=

n∑
j=1

τj ⊗ ujn

= τ ′n.

Summarising, the map α exists and is a *-homomorphism. It is straight-
forward to check that α is unital and since u is a corepresentation, α is
coassociative.
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Now, we show that α(C∗(Zn−1
2 ))(1 ⊗ C(SO−1

n )) is linearly dense in
C∗(Zn−1

2 )⊗ C(SO−1
n ). It holds

n∑
i=1

α(τi)(1⊗ uki) =
n∑
j=1

(
τj ⊗

n∑
i=1

ujiuki

)
=

n∑
j=1

τj ⊗ δjk = τk ⊗ 1,

thus (τk⊗1) ∈ α(C∗(Zn−1
2 ))(1⊗C(SO−1

n )) for 1 6 k 6 n. Since α is unital,
we also get 1 ⊗ C(SO−1

n ) ⊆ α(C∗(Zn−1
2 ))(1 ⊗ C(SO−1

n )). By a standard
argument, see for example [17, Section 4.2], we get that α(C∗(Zn−1

2 ))(1⊗
C(SO−1

n )) is linearly dense in C∗(Zn−1
2 )⊗ C(SO−1

n ).
It remains to show that the magic unitary matrix associated to α com-

mutes with the adjacency matrix of FQn. We want to show that α preserves
the eigenspaces of the adjacency matrix, i.e. α(Eλ) ⊆ Eλ ⊗ C(SO−1

n ) for
all eigenspaces Eλ, then Theorem 1.8 yields the assertion. Since it holds
tj = τjτn, by Lemma 5.5 we have eigenvectors

pwi1...in−1 = ti11 . . . t
in−1
n−1 =

{
τ i11 . . . τ

in−1
n−1 for

∑n−1
k=1 ik even

τ1−i1
1 . . . τ

1−in−1
n−1 for

∑n−1
k=1 ik odd

corresponding to the eigenvalues λi1...in−1 as in Lemma 5.4. Using Lem-
ma 5.6, we see that the eigenspaces Eλk are spanned by eigenvectors
τ i11 . . . τ

in−1
n−1 of word lengths k or n− k, where we consider the word length

with respect to τ1, . . . , τn−1.
Let 1 6 l 6 n−1. By Lemma 5.7, we have for i1, . . . , il, ia 6= ib for a 6= b:

α(τi1 . . . τil) =
∑

j1,...,jl;
ja 6=jb for a 6=b

τj1 . . . τjl ⊗ uj1i1 . . . ujlil .

For τj1 . . . τjl , where js 6= n for all s, we immediately get that this is in the
same eigenspace as τi1 . . . τil since τj1 . . . τjl has the same word length as
τi1 . . . τil . Take now τj1 . . . τjl , where we have js = n for some s. We get

τj1 . . . τjl = τj1 . . . |τjs . . . τjlτn

= τj1 . . . |τjs . . . τjlτ1 . . . τn−1,

which has word length n−1−(l−1) = n−l, thus it is in the same eigenspace
as τi1 . . . τil . This yields

α(Eλ) ⊆ Eλ ⊗ C(SO−1
n ),

for all eigenspaces Eλ and thus SO−1
n acts on FQn by Theorem 1.8. �

Now, we can prove our main theorem.

Theorem 5.9. — For n odd, the quantum automorphism group of the
folded n-cube graph FQn is SO−1

n .
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Proof. — By Lemma 5.8 we get a surjective map C(G+
aut(FQn)) →

C(SO−1
n ). We have to show that this is an isomorphism between C(SO−1

n )
and C(G+

aut(FQn)). Consider the universal action on FQn
β : C∗(Zn−1

2 )→ C∗(Zn−1
2 )⊗ C(G+

aut(FQn)).

Consider τ1, . . . , τn like in Lemma 5.8. They have word length n−2 or n−1
with respect to t1, . . . , tn−1 and they form a basis of E−n+2 by Lemma 5.6.
Therefore, we get elements xij such that

β(τi) =
n∑
j=1

τj ⊗ xji

by Corollary 1.9. Similar to [6] one shows that xij fulfill Relations (4.1)–
(4.4). It remains to show that Relation (4.5) holds. Applying β to τn =
τ1 . . . τn−1 and using Lemma 5.7 yields∑

j

τj ⊗ xjn = β(τn) =
∑

i1,...,in−1;
ia 6=ib for a 6=b

τi1 . . . τin−1 ⊗ xi11 . . . xin−1n−1

=
n∑
j=1

∑
(i1,...,in−1)∈Ij

τi1 . . . τin−1 ⊗ xi11 . . . xin−1n−1.

As in the proof of Lemma 5.8, we have τi1 . . . τin−1 = τj for (i1, . . . , in−1) ∈
Ij and we get

n∑
j=1

τj ⊗ xjn =
n∑
j=1

τj ⊗ ∑
(i1,...,in−1)∈Ij

xi11 . . . xin−1n−1

 .

We deduce

xjn =
∑

(i1,...,in−1)∈Ij

xi11 . . . xin−1n−1,

which is equivalent to Relation (4.5) by Lemma 4.4. Thus, we also get a
surjective map C(SO−1

n ) → C(G+
aut(FQn)) which is inverse to the map

C(G+
aut(FQn))→ C(SO−1

n ). �

Remark 5.10.

(1) It was asked in [7] by Banica, Bichon and Collins to investigate
the quantum automorphism group of the Clebsch graph. Since the
5-folded cube graph is the Clebsch graph we get G+

aut(ΓClebsch) =
SO−1

5 .
(2) The 3-folded cube graph is the full graph on four points, thus our

theorem yields S+
4 = SO−1

3 , as already shown in [4].
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Remark 5.11. — We do not have a similar theorem for folded cube graphs
FQn with n even, since the eigenspace E−n+2 behaves different in the odd
case.
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