Chern classes of reductive groups and an adjunction formula
Annales de l'Institut Fourier, Volume 56 (2006) no. 4, p. 1225-1256
In this paper, I construct noncompact analogs of the Chern classes for equivariant vector bundles over complex reductive groups. For the tangent bundle, these Chern classes yield an adjunction formula for the (topological) Euler characteristic of complete intersections in reductive groups. In the case where a complete intersection is a curve, this formula gives an explicit answer for the Euler characteristic and the genus of the curve. I also prove that the higher Chern classes vanish. The first and the last nontrivial Chern classes are described explicitly. An extension of these results to the setting of spherical homogeneous spaces is outlined.
Dans cet article, je construis l’analogue non compact des classes de Chern pour des fibrés vectoriel équivariants au-dessus de groupes réductifs complexes. Pour le fibré tangent, ces classes de Chern produisent une formule d’adjonction pour la caractéristique d’Euler (topologique) d’intersections complètes dans des groupes réductifs. Dans le cas d’une intersection complète qui est une courbe, cette formule donne une réponse explicite pour la caractéristique d’Euler et le genre de la courbe. Je démontre également que les classes de Chern supérieures sont nulles. La première et la dernière classe de Chern non nulle sont décrites explicitement. J’esquisse également une extension de ces résultats dans le cadre des espaces homogènes sphériques.
DOI : https://doi.org/10.5802/aif.2211
Classification:  14L30,  20G05
Keywords: Reductive groups, hyperplane section, Chern classes
@article{AIF_2006__56_4_1225_0,
     author = {Kiritchenko, Valentina},
     title = {Chern classes of reductive groups and an adjunction formula},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {56},
     number = {4},
     year = {2006},
     pages = {1225-1256},
     doi = {10.5802/aif.2211},
     zbl = {1120.14005},
     mrnumber = {2266889},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2006__56_4_1225_0}
}
Chern classes of reductive groups and an adjunction formula. Annales de l'Institut Fourier, Volume 56 (2006) no. 4, pp. 1225-1256. doi : 10.5802/aif.2211. https://aif.centre-mersenne.org/item/AIF_2006__56_4_1225_0/

[1] Bien, Frédéric; Brion, Michel Automorphisms and local rigidity of regular varieties, Compositio Math., Tome 104 (1996) no. 1, pp. 1-26 | Numdam | MR 1420707 | Zbl 0910.14004

[2] Bifet, E.; De Concini, C.; Procesi, C. Cohomology of regular embeddings, Adv. in Math., Tome 82 (1990) no. 1, pp. 1-34 | Article | MR 1057441 | Zbl 0743.14018

[3] Bravi, P.; Pezzini, G. Wonderful varieties of type D (arXiv.org/math.AG/ 0410472)

[4] Brion, Michel Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math J., Tome 58 (1989) no. 2, pp. 397-424 | Article | MR 1016427 | Zbl 0701.14052

[5] Brion, Michel Vers une généralisation des espaces symétriques, J. Algebra, Tome 134 (1990) no. 1, pp. 115-143 | Article | MR 1068418 | Zbl 0729.14038

[6] Brion, Michel The behaviour at infinity of the Bruhat decomposition, Comment. Math. Helv., Tome 73 (1998) no. 1, pp. 137-174 | Article | MR 1610599 | Zbl 0935.14029

[7] Brion, Michel; Kausz, Ivan Vanishing of top equivariant Chern classes of regular embeddings (preprint arxiv.org/math.AG/0503196) | MR 2216242 | Zbl 05033998

[8] De Concini, C. Equivariant embeddings of homogeneous spaces, Proceedings of the International Congress of Mathematicians (Berkeley, California, USA), Amer. Math. Soc., Providence, RI, Tome 1,2 (1986), pp. 369-377 | MR 934236 | Zbl 0697.53044

[9] De Concini, C.; Procesi, C. Complete symmetric varieties I, Invariant theory (Montecatini, 1982), Springer, Berlin (Lect. Notes in Math.) Tome 996 (1983), pp. 1-44 | MR 718125 | Zbl 0581.14041

[10] De Concini, C.; Procesi, C. Complete symmetric varieties II Intersection theory, Algebraic groups and related topics (Kyoto/Nagoya, 1983), North-Holland, Amsterdam (Adv. Stud. Pure Math.) Tome 6 (1985), pp. 481-513 | MR 803344 | Zbl 0596.14041

[11] Ehlers, F. Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten, Math. Ann., Tome 218 (1975) no. 2, pp. 127-157 | Article | MR 492378 | Zbl 0301.14003

[12] Fulton, W. Intersection theory, Springer, Berlin (1984) | MR 732620 | Zbl 0541.14005

[13] Gelfand, I. M.; Kapranov, M. M.; Zelevinsky, A. V. Generalized Euler integrals and A-hypergeometric functions, Adv. Math., Tome 84 (1990) no. 2, pp. 255-271 | Article | MR 1080980 | Zbl 0741.33011

[14] Griffiths, P.; Harris, J. Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, Pure and Applied Mathematics (1978) | MR 507725 | Zbl 0408.14001

[15] Kapranov, M. Hypergeometric functions on reductive groups, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publishing, River Edge, NJ (1998), pp. 236-281 | MR 1672049 | Zbl 0987.33008

[16] Kaveh, Kiumars Morse theory and Euler characteristic of sections of spherical varieties, Transformation Groups, Tome 9 (2004) no. 1, pp. 47-63 | Article | MR 2130602 | Zbl 1077.14061

[17] Kazarnovskii, B. Ya. Newton polyhedra and the Bezout formula for matrix-valued functions of finite-dimensional representations, Funct. Anal. Appl., Tome 21 (1987) no. 4, pp. 319-321 | Article | MR 925078 | Zbl 0662.22014

[18] Khovanskii, A. G. Newton polyhedra, and the genus of complete intersections, Funct. Anal. Appl., Tome 12 (1978) no. 1, pp. 38-46 | MR 487230 | Zbl 0406.14035

[19] Kiritchenko, Valentina A Gauss-Bonnet theorem, Chern classes and an adjunction formula for reductive groups, University of Toronto, Toronto, Ontario (2004) (Ph. D. Thesis)

[20] Kleiman, S. L. The transversality of a general translate, Compositio Mathematica, Tome 28 (1974) no. 3, pp. 287-297 | Numdam | MR 360616 | Zbl 0288.14014

[21] Knop, Friedrich The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras (1991), pp. 225-249 | MR 1131314 | Zbl 0812.20023

[22] Knop, Friedrich Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc., Tome 9 (1996) no. 1, pp. 153-174 | Article | MR 1311823 | Zbl 0862.14034

[23] Luna, D. Sur les plongements de Demazure, J. Algebra, Tome 258 (2002) no. 1, pp. 205-215 | Article | MR 1958903 | Zbl 1014.17009

[24] Richardson, R. W. Principal orbit types for algebraic transformation spaces in characteristic zero, Invent. Math., Tome 16 (1972), pp. 6-14 | Article | MR 294336 | Zbl 0242.14010

[25] Rittatore, Alvaro Reductive embeddings are Cohen-Macaulay, Proc. Amer. Math. Soc., Tome 131 (2003) no. 3, pp. 675-684 | Article | MR 1937404 | Zbl 1071.14518

[26] Timashev, D. Equivariant compactifications of reductive groups, Sb. Math., Tome 194 (2003) no. 3–4, pp. 589-616 | Article | MR 1992080 | Zbl 1074.14043