On a two-variable zeta function for number fields  [ Sur une fonction zêta à deux variables pour les corps de nombres ]
Annales de l'Institut Fourier, Tome 53 (2003) no. 1, pp. 1-68.

Cet article étudie une fonction zêta à deux variables Z K (w,s) attachée à un corps de nombres algébriques K. Définie par van der Geer et Schoof, elle provient d’un analogue du théorème de Riemann-Roch pour les corps de nombres, utilisant les diviseurs d’Arakelov. Lorsque w=1 cette fonction devient la fonction zêta de Dedekind complète ζ ^ K (s) du corps K. C’est une fonction méromorphe de deux variables complexes avec s(w-s) comme diviseur des pôles, et elle satisfait l’équation fonctionnelle Z K (w,s)=Z K (w,w-s). Nous considérons le cas particulier K=, pour lequel lorsque w=1 la fonction est ζ ^(s)=π -s 2 Γ(s 2)ζ(s). Nous montrons que la fonction ξ (w,s):=s(s-w) 2wZ (w,s) est une fonction entière sur 2 , satisfaisant l’équation fonctionnelle ξ (w,s)=ξ (w,w-s), et vérifiant ξ (0,s)=-s 2 8(1-2 1+s 2 )(1-2 1-s 2 )ζ ^(s 2)ζ ^(-s 2). Nous étudions l’emplacement des zéros de Z (w,s) pour les valeurs réelles de w=u. Pour u0 fixé, les zéros sont situés dans une bande verticale de largeur au plus u+16 et le nombre N u (T) de zéros de hauteurs au plus T possède une asymptotique semblable à celle s’appliquant aux zéros de la fonction zêta de Riemann. Pour u<0, les fonctions Z (u,s) sont strictement positives sur la "droite critique" (s)=u 2. Ce phénomène est associé à un semi-groupe de convolution, positif, de paramètre u >0 , qui est un semi-groupe de lois de probabilités infiniment divisibles, ayant les densités P u (x)dx pour x réel, avec P u (x)=1 2πθ(1) u Z (-u,-u 2+ix), et θ(1)=π 1/4 /Γ(3/4).

This paper studies a two-variable zeta function Z K (w,s) attached to an algebraic number field K, introduced by van der Geer and Schoof, which is based on an analogue of the Riemann-Roch theorem for number fields using Arakelov divisors. When w=1 this function becomes the completed Dedekind zeta function ζ ^ K (s) of the field K. The function is a meromorphic function of two complex variables with polar divisor s(w-s), and it satisfies the functional equation Z K (w,s)=Z K (w,w-s). We consider the special case K=, where for w=1 this function is ζ ^(s)=π -s 2 Γ(s 2)ζ(s). The function ξ (w,s):=s(s-w) 2wZ (w,s) is shown to be an entire function on 2 , to satisfy the functional equation ξ (w,s)=ξ (w,w-s), and to have ξ (0,s)=-s 2 8(1-2 1+s 2 )(1-2 1-s 2 )ζ ^(s 2)ζ ^(-s 2). We study the location of the zeros of Z (w,s) for various real values of w=u. For fixed u0 the zeros are confined to a vertical strip of width at most u+16 and the number of zeros N u (T) to height T has similar asymptotics to the Riemann zeta function. For fixed u<0 these functions are strictly positive on the "critical line" (s)=u 2. This phenomenon is associated to a positive convolution semigroup with parameter u >0 , which is a semigroup of infinitely divisible probability distributions, having densities P u (x)dx for real x, where P u (x)=1 2πθ(1) u Z (-u,-u 2+ix), and θ(1)=π 1/4 /Γ(3/4).

DOI : https://doi.org/10.5802/aif.1939
Classification : 11M41,  11G40,  60E07
Mots clés: diviseurs d’Arakelov, équation fonctionnelle, lois de probabilités infiniment divisibles, fonction zêta
@article{AIF_2003__53_1_1_0,
     author = {Lagarias, Jeffrey C. and Rains, Eric},
     title = {On a two-variable zeta function for number fields},
     journal = {Annales de l'Institut Fourier},
     pages = {1--68},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {53},
     number = {1},
     year = {2003},
     doi = {10.5802/aif.1939},
     mrnumber = {1973068},
     zbl = {1106.11036},
     language = {en},
     url = {aif.centre-mersenne.org/item/AIF_2003__53_1_1_0/}
}
Lagarias, Jeffrey C.; Rains, Eric. On a two-variable zeta function for number fields. Annales de l'Institut Fourier, Tome 53 (2003) no. 1, pp. 1-68. doi : 10.5802/aif.1939. https://aif.centre-mersenne.org/item/AIF_2003__53_1_1_0/

[1] G. E. Andrews The Theory of Partitions, Addison-Wesley (Reprint: Cambridge University Press, 1998), Reading, Mass., 1976 | MR 1634067 | Zbl 0655.10001

[2] G. E. Andrews; R. Askey; R. Roy Special Functions, Cambridge Univ. Press, Cambridge, 1999 | MR 1688958 | Zbl 0920.33001

[3] T. M. Apostol Modular Functions and Dirichlet Series in Number Theory, Springer, New York, 1976 | MR 422157 | Zbl 0697.10023

[4] P. Biane; J. Pitman; M. Yor Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc, Tome 38 (2001), pp. 435-465 | Article | MR 1848256 | Zbl 1040.11061

[5] E. Bombieri; D. A. Hejhal On the distribution of zeros of linear combinations of Euler products, Duke Math. J, Tome 80 (1995), pp. 821-862 | MR 1370117 | Zbl 0853.11074

[6] A. Borisov Convolution structures and arithmetic cohomology (3 Jan 2001) (e-print, arXiv: math.AG9807151 v3)

[7] R. W. Bruggeman Families of Automorphic Forms, Birkhäuser Verlag, Basel, 1994 | MR 1306502 | Zbl 0821.11029

[8] J. B. Conrey; A. Ghosh Turán inequalitites and zeros of Dirichlet series associated with certain cusp forms, Trans. Amer. Math. Soc, Tome 342 (1994), pp. 407-419 | Article | MR 1207582 | Zbl 0796.11021

[9] H. Davenport Multiplicative Number Theory, Springer-Verlag, New York, 1980 | MR 606931 | Zbl 0453.10002

[10] W. Feller An Introduction to Probability Theory and its Applications, Volume II, John Wiley \& Sons, New York, 1971 | MR 270403 | Zbl 0219.60003

[11] G. van der Geer; R. Schoof Effectivity of Arakelov Divisors and the theta divisor of a number field, Selecta Math., New Series, Tome 6, eprint: \tt arXiv math.AG/9802121, 2000 | MR 1847381 | Zbl 1030.11063

[12] D. A. Hejhal On a result of Selberg concerning zeros of linear combinations of L-functions, Internat. Mat. Research Notices (2000) no. 11, pp. 551-577 | Article | MR 1763856 | Zbl 01513067

[13] S. Lang Introduction to Modular Forms, Springer-Verlag, New York, 1976 | MR 429740 | Zbl 0344.10011

[14] S. Lang Algebraic Number Theory, Springer-Verlag, New York, 1994 | MR 1282723 | Zbl 0811.11001

[15] J. Lehner The Fourier coefficients of automorphic forms on horocyclic groups II, Michigan Math. J, Tome 6 (1959), pp. 173-193 | Article | MR 106280 | Zbl 0085.30003

[16] J. Lehner Magnitude of the Fourier coefficients of automorphic forms of negative dimension, Bull. Amer. Math. Soc, Tome 67 (1961), pp. 603-606 | Article | MR 138930 | Zbl 0106.28702

[17] J. Lehner Discontinuous Groups and Arithmetic Subgroups, Mathematical Surveys, Tome Number VIII, Amer. Math. Soc., Providence, RI, 1964 | Zbl 0178.42902

[18] R. Pellikaan; R. Pellikaan, M. Perret and S. G. Vladut, Eds. On special divisors and the two variable zeta function of algebraic curves over finite fields, Arithmetic, Geometry and Coding Theory (1996), pp. 175-184 | Zbl 1019.11016

[19] H. Petersson Über automorphe Orthogonalfunktionen und die Konstruktion der automorphen Formen von positiver reeller Dimension, Math. Ann, Tome 127 (1954), pp. 33-81 | Article | MR 60542 | Zbl 0058.06801

[20] H. Petersson Über Betragmittelwerte und die Fourier-Koeffizienten der ganzen automorphen Formen, Arch. Math. (Basel), Tome 9 (1958), pp. 176-182 | MR 100675 | Zbl 0082.29504

[21] J. Pitman; M. Yor Infinitely divisible laws associated to hyperbolic functions, Univ. Calif.-Berkeley Stat. Technical Rept. (2001) no. 581

[22] H. Rademacher On the expansion of the partition function in a series, Ann. Math, Tome 44 (1943), pp. 416-422 | Article | MR 8618 | Zbl 0060.10005

[23] L. I. Ronkin Introduction to the Theory of Entire Functions of Several Variables, Amer. Math. Soc., Providence, RI, 1974 | MR 346175 | Zbl 0286.32004

[24] L. I. Ronkin; G. M. Khenkin, Ed. Entire Functions, Several Complex Variables III (Encyclopedia of Mathematical Sciences) Tome Volume 9 (1989), pp. 1-30

[25] W. Stoll Holomorphic Functions of Finite Order in Several Complex Variables, CBMS Publication, Tome No. 21 (1974) | Zbl 0292.32003