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ON A TWO-VARIABLE ZETA FUNCTION
FOR NUMBER FIELDS

by J. C. LAGARIAS* and E. RAINS

1. Introduction.

Recently van der Geer and Schoof [11, Prop. 1] formulated an "exact"
analogue of the Riemann-Roch theorem for an algebraic number field K,
based on Arakelov divisors. They used this result to formally express the
completed zeta function of K as an integral over the Arakelov divisor
class group Pic(K) of K. They introduced a two-variable zeta function
attached to a number field K, also given as an integral over the Arakelov
class group, which we call either the Arakelov zeta function or the two-

variable zeta function. This zeta function was modelled after a two-variable

zeta function attached to a function field over a finite field, introduced in
1996 by Pellikaan [18]. For convenience we review the Arakelov divisor
interpretation of the two-variable zeta function and the Riemann-Roch
theorem for number fields in an appendix.

In this paper we study in detail the two-variable zeta function

attached to the rational field K = Q, and in the final section we consider
two-variable zeta functions for general algebraic number fields K. The

* 
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Keywords: Arakelov divisors - functional equation - zeta functions.
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results are derived starting from an integral representation of this function,
and if one takes it as given, then the paper is independent of the Arakelov
divisor interpretation. The Arakelov class group of Q can be identified with
the positive real line (with multiplication as the group operation) and van
der Geer and Schoof’s integral becomes, formally,

(1.1)

in which

(1.2)

is the theta function , where

is a Jacobi theta function. The ^--’ used in ( 1.1 ) reflects the fact that the
integral on its right side converges nowhere; a regularization is needed

to assign it a meaning. Such a regularization can be obtained using the
Arakelov two-variable zeta function ZQ(w, s) attached to Q, which we
define to be

Our definition here differs from the one in van der Geer and Schoof [11]
by a linear change of variable, setting their second variable t = w - s. The
integral on the right side of (1.3) has a region of absolute convergence in
(~2 , which is the open cone

The function meromorphically continues from the cone C to
all of (C2, with polar divisor consisting of the (complex) hyperplanes
{8 == = 01, a set of real-codimension two, see §2. On restricting
ZQ(w, s) to the line w = 1, the resulting function is the completed Riemann
zeta function ((8), which is

Thus the two-variable zeta function ZQ(w, s) defined via ( 1.3) provides
a method to regularize the integral ( 1.1), and the same can be done for
arbitrary number fields.
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We are motivated by several questions about this function.

(1) What are the properties of the function as a meromorphic function
of two complex variables? In particular, determine information about its
zero divisor.

(2) What is the meaning of the additional variable w and what arith-
metic information does it encode?

(3) What properties of this two-variable zeta function reflect Arakelov
geometry?

(4) Is there any connection between zeta functions encoding information
based on Arakelov geometry and zeta functions coming from automorphic
representations and the Langlands program?

This paper mainly addresses question (1), obtaining information on
the zero set of the Arakelov zeta function. Concerning question (2), we
observe in §2 that the function ZQ(w, s) is representable by the integral

which expresses it as a Mellin transform of 2() ( t ) w. The function 0(t)w is a
modular form of weight 2 (with multiplier system) on a congruence sub-
group of the modular group, and the complex variable w/2 parametrizes
the weight of this modular form. The arithmetic information it encodes

includes the invariants q(Q) and g(Q) introduced in van der Geer and
Schoof [11], defined in the appendix. Concerning question (3), we ob-
serve that there is an extra structure associated to ZQ (w, s), which is a
holomorphic convolution semigroup of complex-valued measures on lines

L (t) = + it) : -oo  t  ~} in the real-codimension one cone

see §7.2. This cone is contained in the region of absolute convergence C of
the integral representation (1.3). Of particular interest for ZQ(w, s) is the
real-codimension two subcone

which generalizes the "critical line" of the zeta function, and on which the
measures are real-valued. Perhaps this semigroup structure is associated in
some way with Arakelov geometry, since various constants associated with
the semigroup on the subcone Ccrit have arithmetic interpretations in the
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framework of van der Geer and Schoof, see §7. Concerning question (4), the
subject of Arakelov geometry was developed in part to answer Diophantine
questions and has a completely different origin from automorphic represen-
tations. Any connection between these two subjects could potentially be of
great interest. However we do not find any obvious connection, and note
only that the w variable interpolates between modular forms of different
weights, and when w is a positive even integer these are holomorphic mod-
ular forms of the type appearing in automorphic representations. In general
these forms are not eigenforms for Hecke operators, and in §3.4 we show
these forms have associated Euler products exactly when w = 0,1, 2, 4
and 8.

Besides giving information on questions ( 1 )- (4) above, the analysis
of this paper may be useful for other purposes. This function provides an
interesting example of an entire function in two complex variables of finite
order, see Ronkin [24] and Stoll [25]. The information about the zero locus
of ZQ(w, s) that we obtain mainly concerns the region where the variable
w is real; these are Mellin transforms of modular forms of real weight,
which have been extensively studied. The movements of zeros in the s-
plane as the (real) parameter w is varied may be compared with movement
of zeros under milder deformations such as those in linear combinations of

L-functions, see Bombieri and Hejhal [5] and Hejhal [12].

The function shares many properties of the Riemann zeta
function. It satisfies the functional equation

When w = u is real then ZQ (u, 8) retains several familiar symmetries of
the Riemann zeta function: it is real on the real axis = 0, and it is

real on the "critical line" R(s) = ~, which is the line of symmetry of the
functional equation. Thus for fixed real u, the zeros of which do

not lie on the critical line or the real axis must occur in sets of four: s, u - s,

s, u - s. This extra symmetry can be used to extract information about
the components of the zero locus, see Lemma 8.1. On the other hand, for
most real u the function ZQ(u, s) fails to satisfy a Riemann hypothesis, as
we describe below. The Riemann zeta function appears when w = 1 and it

is interesting to note that it also appears in terms of data at w = 0, given
in the following result, which is proved in §5.
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THEOREM l.l. The function

is an entire function in two complex variables. At w = 0 it is

where ~(s) is the completed Riemann zeta function. In particular, for all
real t,

is strictly positive, with ~Q(0, 0) = 1/2.
The Jacobi triple product formula plays an essential role in our

derivation of the formula (1.7). Note that the function coincides

with the Riemann ~-function, and the functional equation ~~ (w, s) -
is inherited from ZQ(w, s).

The most striking result of this paper appears in §7, and concerns for
negative real w = -u (u &#x3E; 0) the behavior of the function ZQ(w, s) on the
"critical line" K(~) == 2013 ~. This result makes a connection with probability
theory, involving infinitely divisible distributions.

THEOREM 1.2. - For negative real w, ulith w - -u (u &#x3E; 0) the

function ZQ (-u, - 2 + it) is given as the Fourier transform

in which

and

The function f (r) is the characteristic function of an infinitely divisible
probability measure with hnite second moment, whose associated Khint-
chine canonical measure Mfdxl has M(x)dx with
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in which ~(s) is the completed Riemann zeta function. In particular,

Many interesting connections between zeta and theta functions and

probability theory are known; see Biane, Pitman and Yor [4] for a com-

prehensive survey. Theorem 1.2 appears structurally different from any of
the known results. The positivity property (1.11) can be called an "anti-
Riemann hypothesis", because it shows there are no zeros on the "critical
line" Re ( s ) _ - 2 for fixed real u &#x3E; 0.

There are a number of different canonical forms used to specify
infinitely divisible distributions. Feller [10, pp. 563] uses the canonical

measure Mf dxl, which we term the Feller canonical measure, while the
Khintchine canonical measure Kf dxl = 1+~2 Mf dxl is often used, see [10,
pp. 564-5]. An infinitely divisible distribution is a member of a positive
convolution semigroup of measures, and the Feller canonical measure is

related to the infinitesimal generator of the semigroup. The measure

M(x)dx above involves the values of the Riemann zeta function on the
boundary of its critical strip, noting that the functional equation gives

Theorem 1.2 follows from two results proved in §7, Theorem 7.1 and
1

Theorem 7.4. We also note that the value 9(1) = 1.08643 appearing
r(4)

in Theorem 1.2 equals e9 where g is the "genus of Q" as defined by van der
Geer and Schoof ~11~, see the appendix.

The positive holomorphic convolution semigroup structure associated
to this two-variable zeta function merits further study. It seems an in-

teresting question to determine the generality of this positivity property.
All algebraic number fields I~ have an associated holomorphic convolution

semigroup of complex-valued measures, which are real-valued measures on
the "critical line" . However the positivity fails to hold in general, and per-
haps is true only for a few specific number fields, see §9.

We comment on related work. There is precedent for studying two-
variable functions given by integrals of the form (1.5) with 0(t) replaced
with some other modular form. Conrey and Ghosh [8, Sect. 5] considered a
Fourier integral associated to powers of the modular form 0(T) of weight 12,
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which is a cusp form. The integral they consider can be transformed to a
constant multiple of the integral

where they take w = k &#x3E; 0, and s = it. They note that associated Dirichlet
series has an Euler product for w = 1, 2, 3, 4, 6, 8,12, and 24. Bruggeman
[7] studied properties of families of automorphic forms of variable weight;
he considers powers of the Dedekind eta function family in [7, 1.5.5].
This family appears in (1.12) since 0 (T) _ r¡( T )24, see [7, p. 11].

We now summarize the contents of the paper. In §2 we give the
analytic continuation and functional equation for essentially
following Riemann’s second proof of the functional equation for ~(s). We
derive integral formulas for ZQ (w, s), which converge on (C x (~ off certain
hyperplanes.

In §3, as a preliminary to later results, we study the Fourier coeffi-
cients of the modular form

We show that (-1)mm!cm(-w) is a polynomial of degree m with nonneg-
ative integer coefficients. For w = u on the positive real axis we obtain the

estimate 6um2~* 2 +1, whose merit is that it is uniform in u. For

general I w = R there is an upper bound

which follows from classical estimates. We show that the Dirichlet series

for w E C has an Euler product if and only if

w = 0, 1, 2,4 and 8.

In §4 we study growth properties of the entire function ~Q (w, s) : .-
We first show that ÇQ (w, s) is an entire function of order

one and infinite type in two complex variables, in the sense that it satisfies
the growth bound: There is a constant C 1 such that for any (w, s) C (C2, if
R + Iwl +1, then

Thus any linear slice function f (s) = ÇQ (as + b, cs + d), has at most
O(R log R) zeros in the disk of radius R as R --4 oo, provided it is not
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identically zero. We then show that for fixed w E C and fixed o~ E R, the
function

has rapid decrease, is in the Schwartz class S(R) , and is uniformly bounded
in vertical strips ~2 , for finite ~2 .

In §5 we treat the case w = 0 and prove Theorem 1.1.

In §6 we treat the case when w = u &#x3E; 0 is a fixed positive real number,
and study the zeros of ~Q(u, s). We show that these zeros are confined to
the vertical strip I  u + 8. Then we show that the number
Nu(T) of zeros p having T has similar asymptotics to that of the
Riemann zeta function, namely

with

and the constant Co is absolute. The zeros of s) appear to lie on the
"critical line" = 2 only for special values u = 1 and u = 2; we observe
that only an infinitesimal fraction of zeros are on this line for u = 4 and
u=8.

In §7 we consider ÇQ(w, s) where w = -u is a fixed negative real
number (-u  0). We prove Theorem 1.2, that the function 
which is necessarily real on the critical line ~(~) = 2013 ~ , is always positive
there. The proof of this result makes essential use of the Jacobi product
formula, which is applicable because the constant term in the theta function
is present in the integral representation (1.5). The associated structure
behind Theorem 1.2 is a holomorphic convolution semigroup Pu,v(x)dx of
complex-valued measures on the real line, defined for (u, v) real in the cone
u &#x3E; 0 and lvl ]  u, and these measures are positive real on the line v = 0.
We derive formulae for the cumulants and moments of these measures. We

also list a number of open questions concerning the location of zeros for

negative real u. For example, for real w = u, are the asympotics of the
number of zeros p with 1~(p)1  T as T - oo the same for negative real u
as they are for positive real u?
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In §8 we consider general complex w, and the zero locus .~~ of

~Q)(~,5). The set .~~ viewed geometricallyt is a one-dimensional complex
manifold, having more than one irreducible analytic component (possibly
infinitely many components), each one of which is a Riemann surface

embedded in (~2. We show that the zeta zeros p7 and p8 are on the same
irreducible component, and raise the question whether the zeta zeros (for
w = 1, s varying) are all on a single irreducible component of the zero
locus.

In §9 we briefly consider Arakelov zeta functions attached to general
algebraic number fields K. All results of this paper extend to the Arakelov
zeta function attached to the Gaussian field K = Q(i), and many of the
results extend to general K, with similar proofs. However the positivity
property of Theorem 1.2 for K = Q, our proof used a product formula
for the modular form and does not extend to general number fields K.
Numerical experiments show that the positivity property does not hold
for several imaginary quadratic fields, with discriminants -8, -11 and
-19. Our computations allow the possibility that it might hold for some
fields whose modular forms do not have a product formula, including the
imaginary quadratic fields with discriminants -3 and -7.

In the appendix we review the Arakelov divisor framework of van der
Geer and Schoof ~11~, and derive formulas for the two-variable zeta function
for K = Q, Q(i) and for a general number field.

Acknowledgements. - The authors thank E. Bombieri, J.-F. Burnol,
J. B. Conrey, C. Deninger, J. Pitman, J. A. Reeds, M. Yor and the reviewer
for helpful comments and references.

NOTATION. - The variables w, s, z denote complex variables with
w = u + iv, s = a + Z’t, z - x + iy, and u, v, a, t, x, y always denote real
variables. We use two versions of the Fourier transform, differing in their
scaling, because the usual conventions for the Fourier transform differ in

probability theory and number theory. The Fourier transform .~’ is given
by

t Considered algebraically there is the additional problem of determining the
multiplicity of each irreducible component.
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with inverse

In probability theory the characteristic function p = p M of a Borel measure
M ~ dx ~ of unit mass on the line is

In the case where M I dx I - f(x)dx uTe write = as an inverse

Fourier transform, and the corresponding Fourier transform is

2. Analytic continuation and functional equation.

We now obtain the meromorphic continuation of ZQ (w, s), which
determines its polar divisor and part of its zero divisor. Using the theta
function transformation formula

(2.1)

we can rewrite

(2.2)

in the form

(2.3)

Then, after a change of variable t - followed by t2 ---7 u, one obtains

Note that 8 (t2 ) - 1 --~ 0 rapidly as t ~ oo, hence 9 (t2 ) - t - 0 rapidly
as t - 0+. This implies that the integral (2.2) converges absolutely on the
open domain C = ~ (w, s) : R(w)  SJR(s)  0} in C2. The convergence is
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uniform on compact subsets of this domain, which defines ZQ(w, s) as an
analytic function there.

THEOREM 2.1. The function analyti-
cally continues to an entire function on C2 , and satisfies the functional
equation

Remark. - For w - 1 we have and

is Riemann’s ~-
function, and we recover the functional equation for ~(s). We give a Fourier-
Laplace transform integral representation for ~~ (w, s) in Theorem 4.4.

Proof. We split the integral (2.2) into two pieces fo and

consider them separately. Using the transformation law yields

Both sides are defined and converge when R(s)  0 and R(w)  0. On the

right side the first integral converges for all (w, s) E C x C, because for
|w|  R and 0  t  1.

as t - 0+, where the constant in the O-symbol depends only on R. This
uniformity of convergence shows that this integral is an entire function on
C2. The second integral in (2.6) converges, for R(s)  0, to the function
1

s .

Similarly,
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with both sides convergent for R( s)  0, R( w)  0 and R( s - w) &#x3E; 0. This

region overlaps the region of convergence of (2.4) in an open domain in C~.
The first integral on the right side of (2.7) defines an entire function on C2 ,
while the second integral in (2.8) is for R( s - w) &#x3E; 0. We obtain

which is valid ’for (w, s) E 0, w. Since the right side of this
equation is invariant under s - w - s, we obtain the functional equation

Now (2.9) implies that s(w - is an entire function on ~2, and
on setting w - 0 in (2.9) we see that Z(O, s) is identically zero. Thus

~Q(~,.s) == is also an entire function on C~2, and satisfies
the same functional equation. D

Viewed as a modular form, 0(t) in (2.2) is not a cusp form, due to
its nonzero constant term. One consequence is that the Mellin transform

Jooo O(t)tS 1f fails to converge anywhere. Riemann’s second proof of the
functional equation (for w = 1) circumvents this problem by removing the
constant term, using 2~(~) == 8(t) - 1 in the integrand, and in this case
the Mellin transform integral converges for R(s) &#x3E; 1. In Theorem 2.1, the
constant term "evaporates" because, formally,

More precisely

One convention for "regularization" of the integral is to analytically con-
tinue these two pieces separately and then add them, which results in (2.11 ) .
Theorem 2.1 justifies this convention by introducing the extra variable w,
finding a common domain C in the (w, s)-plane where the integral con-
verges, and then analytically continuing in both variables to the line w = 1.
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We next give modified integral formulas for s) valid on most of
(C2. We define Heaviside’s function H(s) for complex s with R(s) # 0 to be

THEOREM 2.2. - JR(w), 01, then

where both integrals converge absolutely.

Remark. - This result expresses by a convergent integral
formula with integrand

These regions are pictured in Figure 2.1; the dotted line is the "critical

line" a = R(w)/2.2 
*

Proof. The second integral (Laplace transform) follows by the

change of variable t = eX, so it suffices to consider the first integral. We
recall
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Figure 2. l. Convergence regions: u = 3t(~), cr = 

Now, we observe that for ?(.§) ~ 0,

whichever integral would diverge is killed by the factor of 77(±5). By
replacing
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and similarly for the formula for ZQ (w, s) simplifies to give the desired
result. C7

Remark. - Since ZQ (w, s) has singularities at s = 0 and s = R(w)
when w = R(w) is real, we cannot obtain quite as nice an expression for
R(w) = u along vertical lines R(s) E {O, R(w) 1. Indeed, the Heaviside
functions are precisely the contributions of the poles as we move the
integral through those points; the poles are also reflected in the fact that
for R(s) C 10, R(w)1, the integral diverges. However, if we renormalize the
integrals:

then the formula is in fact valid for all s # {O, ul; to prove this, use the
identity

valid for = 0, and proceed as before.

3. Fourier coefficient estimates.

The function 0(t) ¿nEZ e-7rn2t is a modular form of weight -1 in the
variable T = it for T in the upper half-plane, with a multiplier system with
respect to the theta groupt Fg, a non-normal subgroup of index 3 in the
modular group PSL(2, Z) which contains f(2), the principal congruence
subgroup of level 2. Thus 9(t)" is a modular form of (complex) weight ~
with (non-unitary) multiplier system on the same group. We consider its
Fourier expansion at the cusp ioo (of width 2), given by
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(The theta group has two cusps, with the second cusp at - l, see Brugge-
man [7, Chap. 14]; we do not consider the other cusp here.) In this section
our object is to obtain estimates for the size of the Fourier coefficients

as rn - oo for fixed u. At the end of the section we give explicit
formulas for a few integer values of w where the Fourier coefficients have
arithmetic significance, namely w = 0,1, 2, 4, 6, and 8.

3.1. Fourier coefficient formulas.

We establish basic properties of the Fourier coefficients as a

function of w = u + iv.

THEOREM 3.1. The Fourier coefficient cm(w) is a polynomial in

Q[w] of degree m. For each m &#x3E; 1, the polynomial

has nonnegative integer coefficients, lead term 2mwm, and vanishing con-
stant term.

To prove this result we will need the triple product formula of the
Jacobi theta function ’03 (z, q), see Andrews [1, Theorem 2.8] or Andrews,
Askey and Roy [2, Section 10.4].

PROPOSITION 3.2 (Jacobi Triple Product Formula). - The Jacobi
theta function

is given by

This formula is valid for Iql  1 and al1 z E C.

Proof of Theorem 3.1. The Fourier coefficients are com-

putable using the expansion
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Terms involving e-""2t can appear only for m, hence we find

that is a polynomial of degree m in w with rational coefficients and
leading term m, w"2. Clearlym.

and c2 (w) = 2w (w -1 ) . Multiplication by m! clears denominators m! (-) E
Z[w] for 1  j  m hence (

It remains to show nonnegativity. We have

The Jacobi triple product formula gives

nence

For w = u &#x3E; 0 real, we have

Now

is a bivariate power series with all 0. This nonnegativity property is

preserved under multiplication of power series, hence ’03(0, -q)-’ inherits
this property by (3.8). Thus all the coefficients of c:n (w) are nonnegative.
One has

m

in which c* o = 0 and &#x3E; 0 for 1 ~ k x m, with c:nm = 2m. 0
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3.2. Fourier coefficients for positive real w.

Let w = u C R&#x3E;o. In this case 0(t)u is a modular form of real weight
u/2, on the theta group with a unitary multiplier system. Classical
estimates of Petersson [20] and Lehner [16] for the Fourier coefficients of
arbitrary modular forms of positive real weight (with multiplier systems)
show they grow polynomially in m, with

with O(mu/2-1Iogm) for u = 4 and = O(mu/4) for

0  u  4, where the O-symbol constants depend on u in an unspecified
manner.

Here we establish some weaker estimates, whose merit is that the

dependence on u is completely explicit, for use in §6.

THEOREM 3.3. - Suppose w = u -&#x3E; 0 is real.

(i) For m ~ 2,

(3.12)

(ii) For m &#x3E; 1,

(3.13)

Proof - (i) Write so that 8(t) -, . 

,"‘"_

93 (e-’t ) . Using Cauchy’s theorem we obtain the following formula:

for any choice 0  R  1. We take R = e-l.ol ~, , and thus

For the other term, we first observe that, since u &#x3E; 0,
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Since the coefficients of d3(q) are positive, the maximum occurs for 9 = 0;
thus we must estimate d3 (R) . Using the functional equation of ~93 (q), we
find, for m ~ 2:

using

The bound (3.12) follows immediately.

(ii) For m = 1 we have cl (u) = 2u  6u, so we may restrict our attention
to m &#x3E;- 2. Differentiating by tq, (denoted by ’) and dividing by u,
we find

Using Cauchy’s theorem we obtain the following formula:

Taking R = as before, we need only estimate the third factor.

The Jacobi triple product formula implies that the coefficients of

q 793 (q) are alternating in sign; in other words, using d4(q) = d3(-q) thes (q)
power series expansion in q of

has positive coefficients. In particular, its maximum is given by
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Writing

we estimate

We conclude that

Substituting this in (3.16), we conclude

Now (3.13) follows after multiplying by ~. * 0

Theorem 3.3 implies that for real positive w = u the Dirichlet series

converges absolutely on the half-plane R(s) &#x3E; ~ + 1. The estimate of
Petersson [20] for the Fourier coefficients implies that the Dirichlet series
converges absolutely in the half-plane R(s) &#x3E; ~ for u &#x3E; 4.

It seems likely that for general w E C the Dirichlet series has no
half-plane of absolute convergence, except when w = u E because the

Fourier coefficients grow too rapidly off the positive real axis. We do not
address this question in this paper.

3.3. Maximum size of Fourier coefficients.

By Theorem 3.1 the maximium size of on the circle Jul = R
occurs on the negative real axis u = -R. Convergent series are known
for Fourier coefficients of modular forms of negative real integer weight,
see Petersson [19] and Lehner [15, Theorem 1]; the convergent series

of Rademacher for the partition function is an example. The following
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proposition extracts the main term in that convergent expansion, as given
in Lehner [15, Theorem 1]; one can also prove it following the proof for the
partition function in Apostol [3, Chap. 5].

PROPOSITION 3.4. - For real -u  0, there holds

where Ia (x) is the modified Bessel function of the first kind, given by

For fixed a &#x3E; 0, this function satisfies

The formula (3.20) implies a general upper bound of the form

for all complex Iwl = R.

3.4. Euler products.

For a few special values of w the associated Dirichlet series has an
Euler product, and the Fourier coefficients have an explicit description. For
w E C we define the function Dw (~) by

The function Dw (s) can be assigned a (formal) Dirichlet series which for
w:~ 0 is

and for w = 0 is
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in which cm (0) = Here the use of -
2w 

- 

2 dw -

indicates that the (formal) Dirichlet series expansion based on Fourier
coefficients need not have any region of absolute convergence. However
for real nonnegative w it does converge on a half-plane, as follows from
Theorem 3.3.

It is easy to determine which values w give (formal) Dirichlet series
that have an Euler product.

LEMMA 3.5. - For w E C the formal Dirichlet series assigned to

Dw (s) has an Euler product expansion if and only if w = 0, l, 2, 4 and 8.

Proof. To see that w = 0,1, 2, 4, and 8 are the only complex values
for which Dw (s) can have an Euler product, we consider the necessary
condition

This gives a polynomial of degree five in w whose roots are w = 0,1, 2, 4,
and 8.

For w = 1, 2, 4 and 8 the Dirichlet series D has an Euler product. For
w = 1 we have already seen that

Forw=2,

For w = 4,

i

For w = 8,
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These Dirichlet series are scaled multiples of the zeta functions for the
rational field, the Gaussian integers, the integral quaternions and the
integral octaves, respectively.

For z,u = 0 the Dirichlet series also has an Euler product, which is

This follows from Theorem 5.1 below; note that it converges absolutely for

R(S) &#x3E; 1. 0

One immediately sees from the expression for ~~ (4, s) as a product
of shifted Riemann zeta functions that most of its zeros cannot be on the

"critical line" R(s) = 2. The only zeros on the line come from the Euler
factor at the prime 2 and have are of number O(T) up to height T, while
there are zeros off the line coming from the Riemann zeta zeros.

Exactly the same thing happens for ~Q)(8, s).
There are other positive integer values of w where the Dirichlet series

can be determined explicitly, without an Euler product. For w = 6 the
Dirichlet series is a linear combination of two Dirichlet series with Euler

products, namely

in which L(s, ~_4) - Z~~=i(~4/m)m ~, with (-4/m) being the Jacobi
symbol.

4. Growth bounds.

It is well-known that the Riemann £-function £(s) 1)
is an entire function of order one and infinite type. It is

bounded in vertical strips. In this section we show that both these proper-
ties generalize to the function ~Q(w, s).

4.1. Growth of maximum modulus.

We prove the following bound for the the two-variable zeta function.

THEOREM 4.1. - There is a constant C &#x3E; 0 such that the entire

function ~~ (w, s) satisfies the growth bound: For all (w, s) E ~C2, if

R- then
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Then (2.9) gives

and 0(t) &#x3E; 1 for all t &#x3E; 0 since all of the terms are positive. It follows that
for all positive t and all w E C,

Moreover, the right-hand-side is increasing in I wi, so we find that for all
t &#x3E; 0,

using

Similarly, the function is decreasing in t, so we find that
for  oo, we have

We thus have
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Since R &#x3E; 1, and RR on this range, it follows that there exists a
constant C3 &#x3E; 0 such that

Since both 1 and Is(s - w) are o(RR), the theorem follows. D

A notion of entire function of finite order for functions of several

complex variables is described in Ronkin [23], [24] and Stoll [25]. In

particular, there is a Weierstrass factorization theorem for such functions
in terms of their zero locus.

The zero locus ZQ of ~Q(w, s) is a one-dimensional complex analytic
manifold, possibly with singular points, which may have many connected
components. One way to study it is to take "linear slices" to obtain

functions h(s) of one complex variable, whose zero sets consist of isolated
points which can be counted. If a := (al , a2 ) and 3 := (/?i,/?2) with

{3j E C, the linear slice function ha,,~ (s) of ÇQ(w, s), is

where we assume la11 -~- 7~ 0 to avoid constant functions.

LEMMA 4.2. - Any linear slice function ha,,~ (s) is an entire function
of order at most 1. = ~{zeros of with Isl ~ TI, then

where the implied constant in the O-symbol depends on a, {3.

Proof - This follows from the growth estimate in Theorem 4. ~,
using Jensen’s formula. D

This result applies in particular to linear slices where w E C is held
fixed, i.e., al = 0, a2 - w, ~31 = 1 and 132 = 0, which gives the function

ÇQ(w, s), with w regarded as constant, e. g. in 37.

4.2. Growth bounds on vertical lines.

We next consider growth bounds for ~~ (w, s) on vertical lines s =
a + it with a held fixed. Recall that a function f (x) is in the Schwartz

space S(R) if and only if for each m, n &#x3E; 0 there is a finite constant Cm,n
such that
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with a similar definition for functions defined on a closed half-line or

R0

THEOREM 4.3. - For each w E C, a E R, and  ~  4 , the
function 

4 4

belongs to the Schwartz space S(R). Furthermore, the implied Schwartz
constants can be chosen uniformly on any compact subset 0 of I (w, a, y) :

 y  E 1. In particular, these functions are bounded in
vertical strips, i.e., there is a finite constant such that

We will deduce this result from an integral representation of ÇQ( w, ~-f-
it), which we prove first. We define the function h(w, z) for wEe and

Next we define

We have the following Fourier-Laplace transform formula for ÇQ (w, s), valid
on (C2 .

THEOREM 4.4. - Let w E C, and real y  y  4 . Then for
allsE(C,

Regarded as a Fourier transform, with s = a + it with fixed a E R, the
integrand

belongs to the Schwartz space and the implied Schwartz constants are
uniform on compact subsets of ~(w, cr,?/):~;GC,(7~R,2013~  y  E 1.
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To prove Theorem 4.4 we formulate several estimates as preliminary
lemmas.

LEMMA 4.5. - Define an analytic function f (w, T) for w, T E C, with
R(T) &#x3E; 0, by

For any integer k &#x3E; 0, and for any region of the form

there is a finite constant such that

Proof. 0 the results of §3 show that f (w, T) has a Fourier
expansion:

m

Note is well-defined as a polynomial in w, hence this expansion
makes sense for w = 0 as well, with Fourier coefficient dw Now,
for m &#x3E; 1, we have the inequality

this follows from the fact that (-l)-c,,,(-w) has positive coefficients, and
is 0 at w = 0. Moreover, this upper bound is monotonically increasing in

Iw I. In particular, since d3 (q) has radius of convergence 1, and no zeros in
the unit disk, we find that for fixed Iwl &#x3E; 0,

has radius of convergence 1, and thus
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In particular, sinee q = e -1fT, the condition R( T) &#x3E; 0 makes f (w, T) analytic
in the region 

Similarly, for the kth derivative, we have

and, using term-by-term absolute value estimates,

Over the region R, R(T) &#x3E; e, this is bounded by its value for w = R,
T = E; as the sum converges for those values, we obtain the required uniform
bound. 0

LEMMA 4.6. - Let z = x + iy, and for fixed - §  y  ~ and fixed
~ E R, the function

where -y(w, z) is defined as in Theorem 4.4, lies in the Schwartz space S(R).
Moreover, the implied Schwartz bounds are uniform over compact regions
in ~ (w, a, y) :

Proof. By definition h(w, z) - in 

 ~ so that We claim that for any cr E R, the
function is a Schwartz function on the

half-line and that the implied Schwartz bounds are uniform over
compact regions in w, E C, - E  y  E R. To see this, note that
for ~(z) &#x3E; 0, we have and since 9(~) is bounded

away from ~~r/4, ~(e2z ) is bounded away from 0. Now using Lemma 4.5,
we have

as x = ~J2(z) --~ oo, uniformly in a compact region in w, - 4  3(z)  4 ,
a, proving the claim. (The function f (w, e 2z) I and its derivatives go to
zero at a super-exponential rate as x - oo, all other variables fixed.)
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Now applying the operator dz ( dz + w) to h(w, z), the claim implies
that q(w, x+iy) is a Schwartz function in x on R~o. The functional equation
O( e2z) == then yields

so that -y(w, x + iy) is a Schwartz function in x on as well. Thus it

is in S(R) , and the uniformity of the estimates in compact regions in w,
- §  £t(z)  E is inherited. D

To prove Theorem 4.4, we will use repeated integration by parts
starting from the integral representation for ZQ(w, s) in Theorem 2.2. To
justify this step we show that the integrand of that representation is a

Schwarz function for f 0, R(w) 1.

LEMMA 4.7. - Let w, z E C, and C R be fixed, with o, ~0, 
Then for z = x + iy,  y  ~, the functions 

all belong to the Schwartz space S(R).

Proof. It suffices to show that + iy) and -x - iy) are
Schwartz functions on the half line x &#x3E; 0. We have

using the relation 1 - H(a) = H(-a). We also have

using the functional equation for O(e 2,). In each case, the first term has
been shown to be Schwartz, and to be uniform in the parameters, in the
proof of Lemma 4.6. It remains only to consider the "correction" terms, on
the half-line x ? 0.

Suppose w # 0, it suffices to observe that for all s E C with R(s) # 0
and fixed y the function H( -s)es(x+iy) is Schwartz on the half-line x &#x3E; 0;
indeed,
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When  0, the exponential dominates, and thus the function is

bounded; when R(s) &#x3E; 0, H(-s) = 0, so the function is 0. Since w # 0, we
can safely divide by w without affecting boundedness.

Suppose w = 0. Then the only new "correction" term is the function
° 

+ which again on a half-line x -&#x3E; 0 is in the Schwartz

space. 0

Remark. - With some further work it can be shown that in Lemma

4.7 the implied constants for the Schwartz functions are uniform over
compact regions in (w, a, y)-space that avoid the two lines a = 0 and
a = ~(w) . However we do not need this result.

Proof of Theorem 4.4. - We take s = o- + it. When a / 10, ~(w) ~,
w ~ 0, Theorem 2.2 gives

where x + iy) is given in Lemma 4.7. Now x + ig) is a Schwartz
function in x by Lemma 4.7, so we may integrate by parts twice, using
z = x + iy, obtaining

This integral agrees with ÇQ (w, s) off the lines a = 0, R(w). Since the
integrand is uniformly Schwartz by Lemma 4.6, this integral gives an
analytic function of w and s, and must therefore agree with ÇQ (w, s)
everywhere. 0

Proof of Theorem 4.3. - View the integral representation of £Q
( w, a - it) in Theorem 4.4 as a Fourier transform, with s = a + it with fixed
~ E R. Since the Fourier transform maps Schwartz space S(R) to itself, it

follows that for fixed - 7r  ~  ’7r
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belongs to S(R). The uniformity of the Schwartz constants on compact
subsets Q of (w, a, y)-space is inherited from the corresponding uniformity
property in Theorem 4.4. 0

We conclude this section with another consequence of the Fourier-

Laplace integral representation of ZQ (w, s) by (uniform) Schwartz func-
tions.

LEMMA 4.8. - Let Q(T) E C[T] be any polynomial. Then for any
s with a / {O, R(w)) and z == ~ + iy  y  ~

Here the integrand is a Schwartz function of t.

Proof. Using Lemma 4.7, the integral is a Fourier transform with
integrand in viewing r as fixed. The case Q(z) =- 1 follows from

Theorem 2.2 by taking the Fourier transform, since the right side of

that formula can be viewed as an inverse Fourier transform. Now use

the fact that the Fourier transform leaves S(R) invariant and transforms
multiplication by s to differentiation, and apply Q(- dz ) to both sides of
the identity with polynomial Q(z) =- 1. D

5. Case w = 0.

We evaluate the entire function ~~(w, s) in the plane w = 0.

THEOREM 5.1. - The entire function ~~ (w, s) of two complex vari-
ables has

in which i

Remarks. (1) It is evident from (5.1 ) that ~Q(0, s) satisfies the

functional equation
~1
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(2) Comparing the formula with Theo-

rem 5.1, and using the functional equation for ((s) leads to

It is evident that this Dirichlet series has an Euler product, already stated
in §3.4.

The proof of Theorem 5.1 depends on the Jacobi triple product
formula, which is used in evaluating the Fourier coefficients of log 9(t).
We state this as a preliminary lemma.

LEMMA 5.2. - The coefficients c~.,.t of

are given by

where

Proof. We use the eta product

By the Jacobi triple product formula, we have

If we define Km by
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then we have

with the convention that

so that Km = -a_1(m) as required. 0

Proof of Theorem 5.1. Since ~(Q (w, s) is an entire function of two
variables we have, for positive real w = u,

we have

Suppose &#x3E; 0. Letting u - 0, and using , we

eventually have R(s) &#x3E; u and so we legitimately obtain

Now expand log O(t2) in Fourier series and integrate term-by-term to obtain

and this converges for R(s) &#x3E; 2 since c~ - O(log m) by Lemma 5.2.
Setting
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and then using (5.4) gives

However we have

valid whenever R(s) &#x3E; 1 (since = O(log rn)) . We thus conclude that for
R(s) &#x3E; 2,

Using the duplication formula I I and the

functional equation for the zeta function, we obtain for R(s) &#x3E; 2 that

m

Since both sides are analytic in s, the formula is valid for all s E C. D

6. Location of zeros: w positive real.

In this section we suppose w = u &#x3E; 0 is fixed, and study the zeros of

ÇQ ( U, s). We will first show that the zeros of fu (s) are localized in a vertical
strip centered on the "critical line" Res = ~, whose width depends on u,
and then we shall derive an estimate for the number of zeros with imaginary
part of height at most T.

6.1. Vertical strip bound.

We show for real w = u &#x3E; 0 that the zeros of ~~ (u, s) are confined
to a vertical strip of width u + 16. Theorem 5.1 implies that this bound is
valid for u = 0 as well.
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LEMMA 6.1. Let u &#x3E; 0 be a fixed real number. Then the entire

function has all its zeros in the

vertical strip

(6.1)

Proof. We have

where

converges absolutely &#x3E; 2 + 1 by Theorem 3.3(i), and meromor-
phically continues to C. All zeros of fu(s) with R( s) &#x3E; 0 must come from

those of the Dirichlet series D~ ( 2 ) = 0.
The Dirichlet series has no zeros in any half plane Re ( s ) &#x3E; a

for any a with

Since ci (u) = 2u, for u &#x3E; 0 we may rewrite this as

Now Theorem 3.3(ii) gives

Choosing a- = 2 + 4 yields

as required. Thus D~ ( 2 ) has no zeros in R (s) &#x3E; u + 8, hence fu (s) also has
no zeros there. Finally the functional equation f~ (s) - s) implies
that fu (s) has no zeros in the region R(s)  u - (u + 8) = -8. 0
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Remark. - The width of the strip of Lemma 6.1 is qualitatively
correct, in that it must grow like u + 0(1) for large u and it must be

of positive width, at least 4, as u - 0 to accomodate the zeros of £Q(0, s)
given in Theorem 5.1.

6.2. Counting zeros to height T.

We establish the following estimate for the number of zeros Nu(T)
within distance T of the real axis of fu(s), which generalizes a similar
estimate for the Riemann zeta function.

THEOREM 6.2. - There is an absolute constant Co such that, for all
real u &#x3E; 0 and T &#x3E; 0,

... T

in which Su (T) satisfies

The proof of this result generalizes the proof for ~(s) in Davenport
[9, Sect. 16], with some extra work to control the dependence in u in all
estimates. We prove several preliminary lemmas.

We use the argument principle, and let AL arg(g(s)) denote the
change in argument 0 in a function g(s) = along a contour L
on which g(s) never vanishes. For positive real u, the zeros of fu(s) are
those of the analytic continuation of the Dirichlet series given in

(6.3), possibly excluding zeros of at negative even integers.

We consider the rectangular contour R, oriented counterclockwise,
with corners at ao :f: iT and u - (7o ± iT), where

and T is chosen to avoid any zeros of fu (s) . We will mainly use the quarter-
contour L consisting of a vertical line V from zo - ~o to zi = ~o + iT,
followed by a horizontal line H from z, to z2 = 2 + iT.

LEMMA 6.3. - For real u &#x3E; 0, and T ~ 2,
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Proof. We have

on the rectangular contour R , oriented counterclockwise, which has its
corners at iT cro =1= iT, as given above.

The functional equation fu (s) = fu (u - s) and the symmetry fu (r) --
imply that

on the quarter-contour L, with each other quarter-contour of R contributing
the same amount. Now

so we obtain

The first three terms on the right contribute

where Stirling’s formula is used for the last estimate. This yields (6.8). D

Our object will be to estimate OL arg D~ ( 2 ) using the formula

starting from the endpoint s = o-o of L , where the next lemma shows

is real and positive and . is real and positive. In the

integral we analytically continue along L, and we choose T so that
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the contour L encounters no zero of Du ( ~ ) . We need information on the
zeros Zu obtained from the Hadamard product.

LEMMA 6.4. - Let u &#x3E; 0 be real.

(i) For s = a + it ~ Zu U {-2, -4, -6,...} there holds

and there is an absolute constant Ao independent of u such that

Proof. (i) We use the Hadamard product expansion

where Zu is the set of zeros of counted with multiplicity. This formula
is valid because is an entire function of order at most one by the
growth estimate of Theorem 4.1. Note that 0 ~ Zu (s) because for fixed
u the function Z(u, s) has a simple pole with residue 1 at s - 0. The

derivation of [9, pp. 82-84] yields the formula

where the prime in the first sum indicates that complex conjugate zeros p
and p are to be summed in pairs, and the last sum converges absolutely.

We set equal the logarithmic derivatives of (6.10) and (6.16), to obtain
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This yields

Taking real parts yields,

Now (6.20) holds in the entire plane by analytic continuation, since the
functions are single-valued. Applying the formula for B(u) simplifies (6.20)
to (6.13), proving (i).

(ii) Suppose R(s) &#x3E; u + 8. Then the formula (6.10) for Du(s) and
Theorem 3.3(ii) give

This implies (6.14). Next, applying Theorem 3.3(ii) again,

which gives (6.15).
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LEMMA 6.5. - (i) There is an absolute constant such that for all

u &#x3E; 0, and all real T,

(ii) There is an absolute constant A2 such that for all u &#x3E; 0 and all T,
the number of zeros p = 0 + Zu with

counting multiplicity, is at most

Proof. (i). Choose s = ao + iT with

so Now apply (6.13) and the bound (6.15) to obtain

We recall the formula

valid for - 7r + 6  ~ arg s  7r - 6 for any fixed 6. (We choose 6 = ~ .) Now
(6.25) gives

Thus (6.26) becomes
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The bound of Lemma 6.1 gives

Thus

and (6.22) follows.

(ii) Let ,S’T denote the set of zeros in .~u satisfying 11’-TI  u + 9. Then,
since u &#x3E; 0,

Combining this with (6.22) implies (6.24) with A2 = 25 A1. D

LEMMA 6.6. - There is an absolute constant A3, such that for u &#x3E; 0

and s = a + iT with s / Zu in the region

there holds, for lal ( -f- 1,

Proof. Set 2u + 10, and so - ao + iT. Then, differencing
(6.19) at s and so, we obtain

The ensures that s has’-7r+8  arg(s)  7r + 6

for 6 = ~ , hence the bounds (6.28) applies to give
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Now

For those zeros with 17 - Tj &#x3E; u + 9, Lemma 6.5(i) gives the bound

If 11’ - + 9, then by Lemma 6.5(ii) the number of such zeros is
O ( (u + 1) -~ u + 2)) and for each one

So their total contribution is 0(log ITI + u*)) in (6.32). Substituting these
bounds in (6.32) yields

as required. 0

Proof of Theorem 6.2. - Set ~o = 2u + 10. Recall that the quarter-
contour L consists of the vertical segment V from ~o to ~o + iT, and the
horizontal segment H from ao + iT to ’ + iT, so that

by (6.12). We have

using Lemma 6.4(ii). Now
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and to estimate this we apply Lemma 6.6. For each zero p we have

which contributes at most 7r. Now Lemma 6.5(ii) gives that there are at
most + + u + 2)) such zeros in the sum (6.31), so their
total contribution to the argument is at most + 1) + u + 2)).
The error term in (6.31) integrated over H contributes at most a further

+ 1) log( ]T] + u + 2)) to the argument, since H is a path of length at
most 32 + 10. Combining these estimates in (6.34) yields the bound (6.6),
completing the proof. D

Remark. - The zero-counting estimate of Theorem 6.2 for u &#x3E; 0 is

easily checked to remain valid for u = 0 by virtue of the explicit formula for

fo (s) = in Theorem 5.1. Note that the extra zeros provided by the
terms (1 - 21+ 2 )(1- 21- 2 ) are needed to make the main term (6.5) valid.

6.3. Movement of zeros.

It is interesting to examine the behavior of the zero set of ~(Q(u, s) for
nonnegative real u, as u is varied. As above, consider variation 1  u  2,
or, more generally, over a fixed bounded range of u. For that range of u,
Theorem 6.2 asserts that the general density of zeros to height T remains
almost constant, with a variation of O (log(T + 2)). Since the number of
zeros in a unit interval at this height is of the same order, it suggests
that every zero can move vertically a distance of at most 0(1), while the
horizontal movement is certainly restricted to distance O ( 1 ) by Lemma 6.1.
Therefore it would appear that varying 1  u  U, there is a constant Cu
depending on U such that every zero moves at most the bounded amount

Cu, independent of the height T of this zero in the critical strip. We cannot
assert this rigorously, however, because we have not ruled out the possibility
of zeros going off the line in pairs and then hop-scotching around other zeros

remaining on the line.

Theorem 6.2 for u = 1 and u = 2 shows that the zero-counting
functions of ~(s) and (Q(i)(1) have extremely similar asymptotics. In

Table 1 we compare the first 25 such zeros. Since (Q(i)(S) == ((s)L(s, X-4),
we have indicated the zeros of ~~(i) ( 2 ) associated to (( 2 ) with an asterisk,
and the remainder come from x_4). Note that the appearance of every
zeta zero on both sides of this table shows that zeta zeros have a kind of
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TABLE 1. - Imaginary part of zeros of (( s) and

self-similar structure by powers of two. However this is only approximately
true, because there is no precise correspondence of zeta zeros due to the
phenomonon of zeros coalescing as u varies, as indicated in Lemma 8.1
in §8.
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7. Location of zeros: w negative real.

In this section we suppose w = -u is negative real (u &#x3E; 0) and
fixed. We will not find zeros, but will instead specify places in the s-plane
where the the function ÇQ (u, s) has no zeros. An interesting extra structure
underlying certain properties of the two-variable zeta function 
for negative real w is a holomorphic convolution semigroup of complex-
valued measures described in §7.2. On the critical line R(s) = - ~, we will
show these are real-valued positive measures, normalizable to be probability
measures, in §7.1.

7.1. Positivity on critical line.

We will establish the following result, concerning the absence of zeros
on the "critical line" (u &#x3E; 0), which will be deduced from
Theorem 7.4 below.

THEOREM 7.1 (Positivity Property). - For real w = -u with u &#x3E; 0

and all real t,

Recall that the functional equation on the "critical line" s = - 2 + it
implies that

hence Z(n)(2013~, 2013 ~ + it) is real. For real -u  0, the integral representation

converges absolutely for all t E R, and it gives

since the integrand is positive. Thus the assertion that Z(Q)(2013~, 2013 ~ +it) # 0
for all real t is equivalent to the positivity condition ( 7.1 ) . By changing
variables in the integral (7.2), with .r = we obtain
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This implies that the function

has inverse Fourier transform

The function is an even function and has

This equation shows that is a signed measure of mass one.
Theorem 7.1 asserts that for Pu (x) &#x3E; 0 for all x holds for all u &#x3E; 0, which
would imply that P(x)dx is a probability measure. In any case Pu(r) is the
characteristic function of the (signed) measure and (7.6) shows
that Pu(r) = where

where the last expression is derived using the functional equation for the
theta function. The assertion that is a characteristic function for all

real u &#x3E; 0 is equivalent to the assertion that each is an infinitely
divisible probability measure; the collection &#x3E; 0} then form
a semigroup under convolution.

We note that the normalizing factor

appearing in (7.5) is the invariant q(Q) introduced by van der Geer and
Schoof [11, p. 16]. They define the genus ofQ to be the "dimension" h° (KQ)
of the canonical divisor KQ = (1), which is

see the appendix.

A necessary and sufficient condition for a function to be a character-

istic function of an infinitely divisible probability measure was developed
by Khintchine, Levy and Kolmogrov. We follow the treatment in Feller [10,
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p. 558-563]. A measure Mfdyl on R is called canonical if it is nonnegative,
assigns finite masses to finite intervals and if both the integrals

converge for some (and therefore all) x &#x3E; 0.

PROPOSITION 7.2. - A complex-valued function f (r) on R is the
characteristic function of an infinitely divisible probability measure if and
only if f (r) = exp with having the form

for some canonical measure M and real constant b. The canonical measure

M and constant b are unique.

Proof. This is shown in Feller [10, pp. 558-563]. D

The representation (7.12) implies that f (0) = 1, f (-r) = f (r) for all
r and that log f (r) is well-defined, with its imaginary part determined by
continuity starting from log f (0) = 0.

We call the measure Mf dxl in Proposition 7.2, which may have
infinite mass, the Feller canonical measure associated to f (r) . A related
canonical measure is the Khintchine canonical measure given by

It can be an arbitrary bounded nonnegative measure, see Feller [10, pp. 564-
5]. Biane, Pitman and Yor [4, p. 9] consider the Levy-Khintchine canon-
ical measure vfdxl, which is defined for infinitely divisible distributions
supported on ~0, oo), and is related to the corresponding Feller canonical
measure by

Note that the Feller canonical measure Mfdxl given in Theorem 1.2 has
support on the whole real line, so has no associated Levy-Khintchine
canonical measure.

We will use a variant of this result which characterizes infinitely
divisible distributions with finite second moment.
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PROPOSITION 7.3. - A complex-valued function f (r) on R is the

characteristic function of an infinitely divisible probability distribution
having a finite second moment if (and only if) f(r) is a C2...function,
f(0) = 1, f (-r) = f (r), for all r, f (r) :~ 0, and

has g(O)  0 and -g(r) is the characteristic function of a positive measure
Mfdxl of finite mass,

If so, then Mfdxl is the associated Feller canonical measure to f (r).

Proof - The "if" part of this result appears in Feller [10, p. 559 bot-
tom]. We will not use the "only if" part of the result and omit its proof. D

THEOREM 7.4. - The function

on R is the characteristic function of an infinitely divisible probability
measure with hnite second moment. Its associated Feller canonical measure

Mfdxl is equal to M(x)dx with

in which

Proof ’ We apply the criterion of Proposition 7.3. We start from
the function

and must show that  0 and that
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is a nonnegative function having finite mass. We have g(0) ,z:~ -1.8946  0

and

using (4.5). Now Theorem 4.4 gives, on taking w = 0 and y = 0, that for
all s E C,

and it follows that Af(~) == ~(Q)(0, -ix). Now Theorem 5.1, which uses the
Jacobi triple product formula, gives

Using ( we obtain

This shows that M(x) is nonnegative, and its strict positivity follows from
the well-known result that ((s) is nonzero on the line R(s) = 1, using

ix). The positive measure M(x)dx has finite mass since

~~ (o, ix) is a Schwartz function by Theorem 4.3, so the result follows

by Proposition 7.3. (The mass of M(x)dx is explicitly determined in
Theorem 7.9 below; numerically it is about 1.8946.) 0

Proof of Theorem 7.1. - For real u &#x3E; 0 the function with f (r)
given by (7.15) is by Theorem 7.4 the characteristic function of a probability
density of a nonnegative measure. The measure is positive except
on a discrete set because the density Pu(x)dx is an analytic function of x.
Then, using the infinite divisibility property, we have

giving positivity for all real y. The probability density is given
by (7.5), and 0(l) &#x3E; 0, so we conclude that ZQ(2013~, 2013~+z~)&#x3E;0 for all
real x. D
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7.2. Holomorphic convolution semigroup.

In § 7.1 we showed that for u &#x3E; 0 the family of probability measures
&#x3E; 0} having the density functions

form a semigroup under convolution, i.e., pul * PU2 = PUl +U2’ We can extend
this to a convolution semigroup of complex-valued measures on the real
line, indexed by two real parameters (u, v) with u &#x3E; 0 and Iv  u, a region
which forms an open cone in R 2 closed under addition. Given such (u, v)
we define a complex-valued measure Pu,v(x)dx on the real line by

In terms of the function ZQ(w, s) these values occupy the real-codimension
one cone

which is contained in the absolute convergence region C of the integral
representation (1.3).

LEMMA 7.5. - For all u &#x3E; 0 and real I  u, pu,,(x) is a complex-
valued measure with

The &#x3E; 0, lvl  ~c~ form a convolution semigroup. That
is, for U1, u2 &#x3E; 0, IV11  ul, IV21  u2 and x E R, we have

In particular
~

Proof. The first formula follows from the formula
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which generalizes (7.4). Indeed the functions .

form a semigroup under multiplication, i.e.,

and the inverse Fourier transform relation (7.19) implies that the measures
Pu,v (x)dx form a semigroup under convolution, i.e.,

as required. D

This semigroup is holomorphic in the sense that the density functions

Pu,v(x) are holomorphic functions of s = - ~ 2 v ~ ix in the cone where they
are defined. Below we compute the moments of the distributions pu,v (x)dx
using Lemma 4.8.

Before doing that, we derive a formula for the logarithmic derivatives
of the theta function 6 (t) at t = 1. Set

7~-

THEOREM 7.6. - For each k &#x3E; 1,

where

It is given by an even polynomial of degree at in ~2,

Remark. In particular, we have
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Proof. Consider the polynomial ring Q[x(t), y(t), z(t)] generated
by the three functions

I I

These functions are all (essentially) modular forms of weight 2 on the theta
group. (The Eisenstein series E2 (t) is not quite a modular form.) One has

where the last two are derived using the transformation laws for and

7~). It follows that ~~x(t), y(t), z(t)~, then 

We claim that the polynomial ring is closed under

differentiation -it. Indeed one has

’-’ -

These can be deduced using properties of derivatives of modular forms;
the operator dt + y (t) must take both x(t) and z(t) into a modular form
of weight 4, the specific one being determined by the first few Fourier
coefficients, and dt does the same for z(t). The procedure is

that used in Lang [13, Chap. 10, Thm. 5.3, p. 161]. Furthermore, by
symmetry, we observe that the subring Q [X (t) 2, y(t), Z (t) is also closed
under differentiation.

Now, we observe that

so for each k &#x3E; 1, d k log 9(t) E Q [x (t) 1, y (t), z (t) ]. The theorem follows
upon evaluation at t = 1. The explicit formulas were found by computa-
tion. 0
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We recall that the cumulants ~~ = of a probability distribution

P(dx) are defined in terms of the characteristic function of P by

In particular, rl (P) is the mean and ~2 (P) is the variance of P. We

extend this definition to the complex measures pu,v (x)dx. The usefulness
of cumulants for infinitely divisible distributions (as opposed to moments)
is that they scale nicely with the parameter u.

THEOREM 7.7. - For real u &#x3E; 0 and reallvl  u, the mean value

For 2, the k-th cumulant of the distribution Pu,v(x)dx has the form

where Ck in Q[’021, with

Moreover, if k &#x3E; 3 is odd, then 0, while 2 is even, then Ck is an

even polynomial of degree k in ~2’

Remark. - In particular, we have

Proof. We have

Applying Lemma 4.8 with Q(T) = 1, w = -u, replacing z
by -z, and multiplying by we obtain
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and thus

We expand this in a Taylor expansion in z; clearly, v contributes only to
the first cumulant. Conversely, since u is multiplied by an even function
of z, it contributes only to the even cumulants; the claim for ~1 follows
immediately. Since

we find that

and thus has Taylor coefficients in Q[021 - 0

Since the moments of a measure are polynomials in its cumulants, we
obtain:

COROLLARY 7.8. - For real u &#x3E; 0  u and integer k &#x3E; 0, the
moments

satisfy v) E Q [021 [U, v], where

We determine the mass of the Feller canonical measure.

THEOREM 7.9. - For all w E C, 
.

In particular, the mass of the Feller canonical measure M~dx~is

which is ( 9(1)8 - ) = 1.8946.
Proof. We deduce this using Lemma 4.8. From the uniform

Schwartz property of £g~~, we see that the left-hand side is entire in w.
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It thus suffices to prove the theorem when R(w)  0. We then have

where Q(z) = z(z - w)/2w. Differentiating and evaluating, we obtain:

as required. Finally, since M(x) _ ~ ~~(o, -ix), we obtain the mass of the
Feller canonical measure on taking w = 0. D

7.3. Location of zeros.

We know little about the location of the zeros of ~~(-u, s), for

negative real -u, aside from the general bound given by Lemma 4.2. We
raise the following questions.

Question 1. Is R(Z(w, s)) &#x3E; 0 in the entire real-codimension one cone

C- :- f(w,s) : w = u u  R(s)  01?
If true, this would extend the result of Theorem 7.1 to exclude zeros

from the open cone. At u = 0 all the zeros are strictly outside the cone, so
to prove this result it would suffice to show that there are never any zeros

on the boundary of the cone.

Question 2. For each fixed u  0 are the zeros of ÇQ ( u, s) confined to a
vertical strip IR(s)1  g(u) for some function g(u)?

The result of §5 shows that this is true on the boundary plane u = 0;
perhaps it persists in the region u  0. The results of §5 also suggest for
u &#x3E; 0 a limited movement of zeros in the vertical direction as u varies, so
we ask the following question for negative u.

Question 3. For fixed u  0 let Nu(T) count (with multiplicities) the
total number of zeros p = ~i -~- iq of s) lying in the horizontal strip
~ s( p) ~  T. Is Nu (T ) finite for each T &#x3E; 0, and if so, does it obey the same
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asymptotic formula as that for u &#x3E; 0 in Theorem 6.2? Here we only ask
for a remainder term smaller than the main term, possibly with a different
dependence on u.

For real -u  0, Theorem 7.1 shows that there are no zeros on the
center line R(s) = -u/2. Thus the nonreal zeros always occur in quadruples

Question 4. The Riemann hypothesis is encoded in the location of the zeros
of ~~(0, s), asserting they are on the four lines ~(s) _ ~=1, =b2. Indeed, the
assertion that ~~ (0, s) has no zero with IR(s)1 I  1 is equivalent to the
Riemann hypothesis. Does the convolution semigroup structure for u  0

play any factor in controlling the location of these zeros?

This question can be studied by considering more general convolution
semigroups.

8. Location of zeros: complex w.

The zero locus .~~ of the entire function ~~ (w, s) decomposes into
a countable union of Riemann surfaces embedded in C2 ; we call these
components. How many components are there in While we cannot

answer this question, we can at least show that certain zeta zeros (on the
slice w = 1) lie on the same component.

LEMMA 8.1. The Riemann zeta zeros P7 2 + 42.04i and p8
2 + 42.90i appearing as zeros of ZQ (w, s) in the slice w = 1 belong to the
same component of ZQ-

Proof. We deform w - u through real values in the interval

2. By numerical computation we find that at u = 2 these two
zeros have moved off the critical line to assume complex conjugate values.

We use the symmetry that when w = u is real, if p is a zero, then so are

p, 1- p and 1- p. In particular, zeros cannot move off the critical line except
by combining in pairs. As u changes, at some point uo they must coalesce on
the critical line as a double zero, then as u changes go off the line, becoming
a pair of complex conjugate zeros. The point of coalescence at uo of two
zeros could be either the intersection of two different components of ZQ
(the intersection having real codimension 4 in (C2 ) or a single component
of having a branch point of order two there (when viewed as projected
on the w- plane.) The latter case must occur, because in the first case the
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movement of the zeros p(u) would have a first derivative as a function of
u which varies analytically in u at the critical point. This manifestly does
not happen, because as a function of u the zeros first move vertically on
the critical line, then change directions at uo to move horizontally off the
line. Thus the component forms a single Riemann surface, with a path on
it from (u, s) = (1, P7) to (1, p8). 11

It seems reasonable to guess that the zeta zeros {p = a -f- it : Im(t) &#x3E;

0} lie on the same component of ZQ. If so, the same would hold for

+ it : Im(t)  01, since the zero set is invariant under complex
conjugation, i.e., ZQ = ZQ. The simplest hypothesis concerning the zero
set would seem to be that it is the closure of a single irreducible complex-
analytic variety of multiplicity one. However we do not have any strong
evidence for this hypothesis.

9. General number fields.

We now briefly consider the Arakelov zeta function for a general
algebraic number field K. Many of the results extend to general K but
the positivity property of Theorem 1.2 does not.

In the case of the Gaussian field Q(i), we have the identity

derived in the appendix. Thus all the results proved here immediately apply
to K = Q(i).

For a general algebraic number field K, the Arakelov two-variable zeta
function ZK (w, s) has a functional equation. Furthermore it can be shown
that ~K (w, s) . := ’(s2ww) is an entire function of order one and

infinite type of two variables, by generalization of the proofs for K = Q.

The proofs given here for the distribution of zeros of for

positive real w partially extend to general K. The proofs of confinement
of the zeros to a vertial strip of width depending on w extend to a
few fields such as the Gaussian field ~(i); they depend on the existence
of an associated Dirichlet series with a nonempty half-plane of absolute

convergence. For general K the Dirichlet series has a nonempty half-plane
of convergence for w a positive integer, but perhaps not for any other values
of w. One expects to get estimates for zeros to height T for such integer
values of w . We do not know whether for fixed positive noninteger real w
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and general I~ the zeros are confined to a vertical strip of finite width, or
that a generalization of the zero counting bounds in Theorem 6.2 holds,
counting zeros in a horizontal strip £t(z)  T. The latter seems plausible,
because the zeros are confined at positive integer w, but if so, new proofs
are needed.

The convolution semigroup property, of a family of complex-valued
measures on a cone associated to negative real w, continues to hold for
general number fields K. The associated measures are real-valued on the
"critical line." However, the proof of positivity of such measures on the
"critical line" for Q given in Theorem 1.2 extends only to a few specific
number fields, such as ~(i) . Our proof used a product formula for the
associated modular form, which permits calculations with its logarithm
and yields an explicit form for the associated Feller canonical measure.
Such product forms exist only for modular forms all of whose zeros are at
cusps. The modular forms associated to most imaginary quadratic fields
generally do not have a product formula, because the associated modular
forms have zeros in the interior of a fundamental domain, and the logarithm
of such forms are multivalued functions.

There are imaginary quadratic number fields with class number one
for which the positivity property does not hold. One can show that the
positivity property holds for a field K if and only if ~K (o, it) is nonnegative
for all real t, where , For K = Q( 2) one
finds that

which clearly has sign changes. We also found by computer calculation that
~K (0, it) for ~( -11) changes sign between t = 3.10 and 3.15, and in
addition on the line w = -1 there is a sign change, with ZK(-1, 4i)  0.

For K = Q( 19) there is a sign change of ~K (0, it) between t = 2.0 and
t = 2.1. It remains conceivable that there exist imaginary quadratic fields
having the positivity property, whose associated modular form does not
have a product formula. In support of this, computer experiments for the
imaginary quadratic number fields Q(;=3) and Q( 7) did not locate
any sign changes for ~K (0, it).

In a different direction, the positivity property of the convolution
semigroup for negative real u on the "critical line" generalizes to certain
classes of modular forms not associated to number fields, which do have a
product formula, as we hope to treat elsewhere.
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A. Appendix: Arakelov zeta function
of van der Geer and Schoof.

This appendix summarizes the framework of van der Geer and
Schoof ~11~, and obtains explicit formulas for the two-variable zeta function
for K = Q and ~(i). The expression of van der Geer and Schoof for the
Arakelov two-variable zeta function is, formally,

In this expression resp. /~([D]) are analogous to the "dimension"
of a sheaf cohomology group. They give a direct definition of /~([.D]), and
then define /~([D]) indirectly(*) to be

where KK is the "canonical" Arakelov divisor for the ring of integers of

K, which is what the Riemann-Roch formula predicts. We now define

Pic(K) and ho([D]). The value h°([D]) turns out to be the logarithm of
a multivariable theta function at a specific point depending on [D], see
(A.16).

In what follows, let K be an algebraic number field, with OK its ring
of integers and OK its discriminant. Set [K : ~~ - n = r1 + 2r2, with rl
real places and r2 complex places. We denote archimedean places of .K by
~ and non-archimedean places by v.

DEFINITION A.1. - (i) An Arakelov divisor D is a formal finite sum
over the non-archimedean places v of K and the rl -f- r2 archimedean

places a,

in which each nv is an integer and each xv is a real number (even at a
complex place a.)

(ii) An Arakelov divisor D is principal if there is an element cx E K*
such that

~ * ~ A. Borisov [6] has given a direct definition of h 1 ( ~D~ ) in some cases, with a proof
of the formula (A.2).
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in which xa (a) equals log la(a)1 or 2 log la(a)1 according as a is a real place
or a complex place. Here a(.) runs over all embeddings of K into C, with
the convention that only one out of each conjugate complex pair of complex
embeddings is used.

(iii) denotes the group of Arakelov divisors (under addition). The
Arakelov divisor class group Pic(K) is the quotient group by the subgroup
of principal Arakelov divisors. The divisor class of D is denoted [D].

The roots of unity AK in K have Arakelov divisor zero. They fit in
the exact sequence

DEFINITION A.2. - The degree deg(D) of an Arakelov divisor is the
real number

Here Nv:= 10K/Pvl, where Pv - fa E OK : lal,  11, in which Nv is
the number of elements in the residue field of v.

Principal divisors have degree zero, so the degree deg([D]) is well-

defined on Arakelov divisor classes.

DEFINITION A.3. - The norm N(D) of an Arakelov divisor D is

DEFINITION A.4. - (i) The ideal ID associated to an Arakelov divisor
D at the finite places is the fractional ideal

where Pv denotes the prime ideal at v.

(ii) The lattice structure associated to an Arakelov divisor D at the
infinite places is a positive inner product on x defined as follows. At
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a real place, za determines a scalar product on R such that 111112 = 
At a complex place X(j determines a Hermitian inner product on C such

= 2e-Xu. The combined inner product is

The (metrized) lattice AD associated to D is the fractional ideal ID (viewed
as a subset of K) embedded in Rr, x as Galois conjugates of each
element a, with distance function measured by this inner product.

The number field K embeds as a dense subset of Rr, x while

each fractional ideal ID embeds discretely as a lattice in this space. The
archimedean coordinates za define a metric structure at the infinite places
such that

where OK is the discriminant of K. The Arakelov class group Pic(K)
parametrizes isometry classes of lattices that have compatible OK-structures
under multiplication. Following Szpiro, the Euler-Poincaré characteristic
x(D) of an Arakelov divisor D is defined as

It is well-defined on divisor classes [D]. In general the Arakelov class group

where Cl(K) denotes the (wide) ideal class group of K, and the second
factors combined are where U(K) is an rl + r2 - 1 dimensional
lattice given by logarithms of (absolute values of) Galois conjugates of
units. Note that Pic°(K), the group of divisor classes of degree 0, is

compact, and its volume is hK RK where ~K and RK are the class number
and regulator of K, respectively.

DEFINITION A.5. - The canonical divisor K K of a number fields K is

the Arakelov divisor whose associated ideal part I,~K is the inverse different
c~Kl for K/Q, and all of whose archimedean coordinates Xu = 0.

These definitions imply that
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DEFINITION A.6. - (i) An Arakelov divisor D is effective if OK C ID.

(ii) The effectivity e(D) of an effective divisor D is

in which

The effectivity e(D) of a non-effective divisor is 0.

The effective divisors are those Arakelov divisors with each nv &#x3E; 0

and the effectivity e(D) of any divisor takes a value 0 ~ e(D)  1. The only
"functions" a E K* whose associated principal divisors (a) are effective are
the roots of unity in K, whose associated Arakelov divisor is 0, the identity
element. By convention we add a symbol (0) to represent a "divisor at
infinity" corresponding to the element 0 E K, with the convention that

(0) + D - (0) for all Arakelov divisors [D] and we define the effectivity
e((0)) 1.

DEFINITION A.7. - (i) The order H° (D) of the group of effective
divisors associated to an Arakelov divisor D is

This sum includes a term a = 0 E K, with the convention that e((O) +
D)) := 1, so that Ho([D]) -&#x3E; 1.

(ii) The effectivity dimension ho(D) is given by

One has h° (D) &#x3E; 0.

The quantities and hO(D) are constant for all divisors in an
Arakelov divisor class ~D~ E Pic(K) and may therefore be denoted HO([D])
and /~([D]), respectively. van der Geer and Schoof [11, Prop. 1] state the
following result.

THEOREM A.l (Riemann-Roch Theorem for number fields) - For
any algebraic number field K and any Arakelov divisor class [D] E Pic(K),
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in which kK is the canonical Arakelov divisor for K, and 
log ~ K.

van der Geer and Schoof defined a new invariant of a number
field K, and an Arakelov analogue of the genus g(K) of K.

DEFINITION A.8. - (i) The invariant 77(K) of K is defined by

(ii) The genus g(K) of K is defined by

For the rational number field

and g(Q) = 0.0829015. The value cv = 0(l), where 8(-) is the

theta function (1.2). One also has

The genus of a function field is usually defined to be the dimension
of the vector space of effective divisors for the canonical class r,; this

motivates the definition of the genus g(K) of a number field. For a function
field the degree of the canonical class is 2g - 2, so one may consider

as a second analogue of genus for a number field. This analogue appears
on the right side of the Riemann-Roch theorem for number fields. One has

In particular j(Q) - 1, and g(~(i)) = 1-E- 2 log 2. The two notions of genus
agree in the function field case and differ in the number field case.
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Below we obtain explicit integral formulas for the two-variable zeta
functions for K = Q and Q (i), of the form (A.1), and also indicate the form
of the two-variable zeta function for a general algebraic number field K.

To define an integral over the Arakelov class group, one must specify
a measure on the group. For compact groups it is Haar measure, and on

noncompact additive groups R it is dx. It is convenient to replace additive
groups by multiplicative group R&#x3E;o using the change of variable e-xa

at real places and the appropriate measure becomes For Q and Q(I)
the Arakelov class group is isomorphic to R.

Case K = Q. - There is a single real place cr. For representatives of
Arakelov divisor classes [D] we may take D to have ideal OQ = Z and with
value at the infinite place x, G R arbitrary, with measure dx at the infinite

place. Thus the Arakelov class group Pic(Q) = R, the additive group, with
x E R being the degree of the divisor. We have

in which one sets e-xa. Using the multiplicative change of variable
e-’, we identify Pic(Q) with the multiplicative group = with

measure 4v-. Thus we have
y

in terms of the theta function ( 1.2) .
The different Do = ( 1 ) , so the canonical divisor = 0. Consequently

we have

We obtain
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Case K = Q(i). - There is a single complex place a. The class
number of OK = is one, so all Arakelov divisor classes [D] in 
have a representative D - whose associated ideal is OK. Thus

Pic(K) - R as an additive group. Letting a = m + ni E Z[i], we have

in which ~~. = e~"" . Thus

The different ((1 + i)2) - (2), and the canonical divisor
Consequently we have

We obtain

using the change of variables t2 = 2y. Comparing this with (A.11 ) yields
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General Number Field. - Let K be an algebraic number field, of
degree [K : Q] = n. We follow Lang [14, Chapter 13] for Hecke’s functional
equation for the Dedekind zeta function. One can show that

which uses a decomposition of the Arakelov class group (A.4). Here a
runs over a set of representatives of the (wide) ideal class group, w(K)
counts the number of roots of unity in K, and E is a fundamental domain
in the (logarithmic) space of units, with Haar measure d* c. The theta

function O(t2/nc, a) is defined in Lang [14, p. 253] and satisfies the functional
equation

using the fact that Ilell - 1, see Lang [14, p. 257]. Using this functional
equation and the substitution u = t-2 one obtains

One has the functional equation

ZK (w, s) = ZK (w, W - s).

For w = 1 one recovers the completed Dedekind zeta function

in which. see Lang [14, p. 254].
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