Integrals for holomorphic foliations with singularities having all leaves compact
Annales de l'Institut Fourier, Tome 39 (1989) no. 2, pp. 451-458.

Nous démontrons que pour un feuilletage holomorphe avec singularités dans une variété projective tel que toute feuille est quasi-projective, l’ensemble des fonctions rationnelles qui sont constantes sur les feuilles forment un champ dont le degré de transcendance est la codimension du feuilletage.

We show that for a holomorphic foliation with singularities in a projective variety such that every leaf is quasiprojective, the set of rational functions that are constant on the leaves form a field whose transcendence degree equals the codimension of the foliation.

@article{AIF_1989__39_2_451_0,
     author = {Gomez-Mont, Xavier},
     title = {Integrals for holomorphic foliations with singularities having all leaves compact},
     journal = {Annales de l'Institut Fourier},
     pages = {451--458},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {39},
     number = {2},
     year = {1989},
     doi = {10.5802/aif.1173},
     zbl = {0667.58052},
     mrnumber = {91d:32045},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1173/}
}
TY  - JOUR
AU  - Gomez-Mont, Xavier
TI  - Integrals for holomorphic foliations with singularities having all leaves compact
JO  - Annales de l'Institut Fourier
PY  - 1989
SP  - 451
EP  - 458
VL  - 39
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1173/
DO  - 10.5802/aif.1173
LA  - en
ID  - AIF_1989__39_2_451_0
ER  - 
%0 Journal Article
%A Gomez-Mont, Xavier
%T Integrals for holomorphic foliations with singularities having all leaves compact
%J Annales de l'Institut Fourier
%D 1989
%P 451-458
%V 39
%N 2
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1173/
%R 10.5802/aif.1173
%G en
%F AIF_1989__39_2_451_0
Gomez-Mont, Xavier. Integrals for holomorphic foliations with singularities having all leaves compact. Annales de l'Institut Fourier, Tome 39 (1989) no. 2, pp. 451-458. doi : 10.5802/aif.1173. https://aif.centre-mersenne.org/articles/10.5802/aif.1173/

[D] A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier, 16-1 (1966), 1-95. | EuDML | Numdam | MR | Zbl

[C.M.] D. Cerveau, J.-F. Mattei, Formes intégrables holomorphes singulières, Astérisque, 97 (1982). | MR | Zbl

[E.M.S.] R. Edwards, K. Millet, D. Sullivan, Foliations with all leaves compact, Topology, 16 (1977), 13-32. | MR | Zbl

[E] D. Epstein, Foliations with all leaves compact, Ann. Inst. Fourier, 26-1 (1976), 265-282. | EuDML | Numdam | MR | Zbl

[F] A. Fujiki, Closedness of the Douady spaces of compact Kaehler spaces, Publ. Math. RIMS, Kyoto U., 14 (1978). | MR | Zbl

[G] A. Grothendieck, Techniques de construction et théorèmes d'existence en Géométrie Algébrique IV : Les Schémas de Hilbert, Séminaire Bourbaki, Exp. 221 (1961), Benjamin, N.Y., 1975. | EuDML | Numdam | Zbl

[G.D.] A. Grothendieck, J. Dieudonné, Éléments de Géométrie Algébrique IV : Étude locale des schémas et de morphismes de schémas, Publ. Math. IHES, 28, 1966. | EuDML | Numdam | Zbl

[H] R. Hartshorne, Algebraic Geometry, Springer Verlag, 1977. | MR | Zbl

[Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math., 79 (1964), I : 109-203 ; II : 205-326. | MR | Zbl

[R] G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actual. Scient. Ind., 1183 (1952). | MR | Zbl

[Sh] I. Shafarevich, Basic Algebraic Geometry, Springer Verlag, 1974. | MR | Zbl

[S] G. Stolzenberg, Volumes, Limits and Extensions of Analytic Varieties, LNM 19, Springer Verlag, 1966. | Zbl

Cité par Sources :