Absolute stability of a compact set is characterized by the cardinality of a fundamental system of positively invariant neighborhoods.
On caractérise la stabilité absolue d’un ensemble compact par les puissances des systèmes fondamentaux de voisinages positifs invariants.
@article{AIF_1972__22_4_265_0,
author = {McCann, Roger C.},
title = {On absolute stability},
journal = {Annales de l'Institut Fourier},
pages = {265--269},
year = {1972},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {22},
number = {4},
doi = {10.5802/aif.440},
zbl = {0252.34050},
mrnumber = {48 #11687},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.440/}
}
McCann, Roger C. On absolute stability. Annales de l'Institut Fourier, Tome 22 (1972) no. 4, pp. 265-269. doi: 10.5802/aif.440
[1] , , Prolongations and stability in dynamical systems, Ann. Inst. Fourier, Grenoble, 14 (1964), 237-268. | Zbl | MR | Numdam
[2] , Dynamical Systems in the Plane, Academic Press, London, 1968. | Zbl | MR
[3] , Absolute stability of non-compact sets, J. Differential Equations 9 (1971), 496-508. | Zbl | MR
[4] , Topology Vol. I, Academic Press, London, 1966. | Zbl | MR
[5] , Another characterization of absolute stability, Ann. Inst. Fourier, Grenoble, 21,4 (1971), 175-177. | Zbl | MR | Numdam
[6] , A classification of centers, Pacific J. Math., 30 (1969), 733-746. | Zbl | MR
Cité par Sources :



