Absolute stability of a compact set is characterized by the cardinality of a fundamental system of positively invariant neighborhoods.
On caractérise la stabilité absolue d’un ensemble compact par les puissances des systèmes fondamentaux de voisinages positifs invariants.
@article{AIF_1972__22_4_265_0, author = {McCann, Roger C.}, title = {On absolute stability}, journal = {Annales de l'Institut Fourier}, pages = {265--269}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {22}, number = {4}, year = {1972}, doi = {10.5802/aif.440}, zbl = {0252.34050}, mrnumber = {48 #11687}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.440/} }
McCann, Roger C. On absolute stability. Annales de l'Institut Fourier, Volume 22 (1972) no. 4, pp. 265-269. doi : 10.5802/aif.440. https://aif.centre-mersenne.org/articles/10.5802/aif.440/
[1] Prolongations and stability in dynamical systems, Ann. Inst. Fourier, Grenoble, 14 (1964), 237-268. | Numdam | MR | Zbl
, ,[2] Dynamical Systems in the Plane, Academic Press, London, 1968. | MR | Zbl
,[3] Absolute stability of non-compact sets, J. Differential Equations 9 (1971), 496-508. | MR | Zbl
,[4] Topology Vol. I, Academic Press, London, 1966. | MR | Zbl
,[5] Another characterization of absolute stability, Ann. Inst. Fourier, Grenoble, 21,4 (1971), 175-177. | Numdam | MR | Zbl
,[6] A classification of centers, Pacific J. Math., 30 (1969), 733-746. | MR | Zbl
,Cited by Sources: