Quantum automorphisms of folded cube graphs
Annales de l'Institut Fourier, Volume 70 (2020) no. 3, pp. 949-970.

We show that the quantum automorphism group of the Clebsch graph is SO 5 -1 . This answers a question by Banica, Bichon and Collins from 2007. More general for odd n, the quantum automorphism group of the folded n-cube graph is SO n -1 . Furthermore, we show that if the automorphism group of a graph contains a pair of disjoint automorphisms this graph has quantum symmetry.

On démontre que le groupe quantique d’automorphismes du graphe de Clebsch est SO 5 -1 ce qui répond à une question de Banica, Bichon et Collins de 2007. En général, pour des valeurs impaires de n, le groupe quantique d’automorphisme du graphe du n-cube plié est SO n -1 . En plus, on démontre qu’un graphe possède des symétries quantiques, si son groupe d’automorphismes contient une paire d’automorphismes disjoints.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3328
Classification: 46LXX, 20B25, 05CXX
Keywords: finite graphs, graph automorphisms, automorphism groups, quantum automorphisms, quantum groups, quantum symmetries
Mot clés : graphes finis, automorphismes des graphes, groupes d’automorphismes, automorphismes quantiques, groupes quantiques, symétries quantiques
Schmidt, Simon 1

1 Saarland University, Fachbereich Mathematik 66041 Saarbrücken (Germany)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2020__70_3_949_0,
     author = {Schmidt, Simon},
     title = {Quantum automorphisms of folded cube graphs},
     journal = {Annales de l'Institut Fourier},
     pages = {949--970},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {3},
     year = {2020},
     doi = {10.5802/aif.3328},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3328/}
}
TY  - JOUR
AU  - Schmidt, Simon
TI  - Quantum automorphisms of folded cube graphs
JO  - Annales de l'Institut Fourier
PY  - 2020
SP  - 949
EP  - 970
VL  - 70
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3328/
DO  - 10.5802/aif.3328
LA  - en
ID  - AIF_2020__70_3_949_0
ER  - 
%0 Journal Article
%A Schmidt, Simon
%T Quantum automorphisms of folded cube graphs
%J Annales de l'Institut Fourier
%D 2020
%P 949-970
%V 70
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3328/
%R 10.5802/aif.3328
%G en
%F AIF_2020__70_3_949_0
Schmidt, Simon. Quantum automorphisms of folded cube graphs. Annales de l'Institut Fourier, Volume 70 (2020) no. 3, pp. 949-970. doi : 10.5802/aif.3328. https://aif.centre-mersenne.org/articles/10.5802/aif.3328/

[1] Banica, Teodor Quantum automorphism groups of homogeneous graphs, J. Funct. Anal., Volume 224 (2005) no. 2, pp. 243-280

[2] Banica, Teodor Higher Orbitals of quizzy quantum group actions (2018) (https://arxiv.org/abs/1807.07231, to appear in Adv. Appl. Math.)

[3] Banica, Teodor; Bichon, Julien Quantum automorphism groups of vertex-transitive graphs of order 11, J. Algebr. Comb., Volume 26 (2007) no. 1, pp. 83-105

[4] Banica, Teodor; Bichon, Julien Quantum groups acting on 4 points, J. Reine Angew. Math., Volume 626 (2009), pp. 75-114

[5] Banica, Teodor; Bichon, Julien; Chenevier, Gaetan Graphs having no Quantum Symmetry, Ann. Inst. Fourier (2007), pp. 955-971

[6] Banica, Teodor; Bichon, Julien; Collins, Benoît The hyperoctahedral quantum group, J. Ramanujan Math. Soc., Volume 22 (2007) no. 4, pp. 345-384

[7] Banica, Teodor; Bichon, Julien; Collins, Benoît Quantum permutation groups: a survey, Noncommutative harmonic analysis with applications to probability (Banach Center Publications), Volume 78, Polish Academy of Sciences, Institute of Mathematics, 2007, pp. 13-34 | Zbl

[8] Bichon, Julien Hopf-Galois systems, J. Algebra, Volume 264 (2003) no. 2, pp. 565-581

[9] Bichon, Julien Quantum automorphism groups of finite graphs, Proc. Am. Math. Soc., Volume 131 (2003) no. 3, pp. 665-673

[10] Bichon, Julien; Yuncken, Robert Quantum subgroups of the compact quantum group SU -1 (3), Bull. Lond. Math. Soc., Volume 46 (2014) no. 2, pp. 315-328

[11] Guillot, Pierre; Kassel, Christian; Masuoka, Akira Twisting algebras using non-commutative torsors: explicit computations, Math. Z., Volume 271 (2012) no. 3-4, pp. 789-818

[12] Lupini, Martino; Mančinska, Laura; Roberson, David Nonlocal Games and Quantum Permutation Groups (2017) (https://arxiv.org/abs/1712.01820)

[13] Neshveyev, Sergey; Tuset, Lars Compact quantum groups and their representation categories, Cours Spécialisés, 20, Société Mathématique de France, 2013 | Zbl

[14] Podleś, Piotr Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU (2) and SO (3) groups, Commun. Math. Phys., Volume 170 (1995) no. 1, pp. 1-20

[15] Schauenburg, Peter Hopf bi-Galois extensions, Commun. Algebra, Volume 24 (1996) no. 12, pp. 3797-3825

[16] Schmidt, Simon The Petersen graph has no quantum symmetry, Bull. Lond. Math. Soc., Volume 50 (2018) no. 3, pp. 395-400

[17] Schmidt, Simon; Weber, Moritz Quantum symmetries of Graph C*-algebras, Can. Math. Bull., Volume 61 (2018) no. 4, pp. 848-864

[18] Timmermann, Thomas An invitation to quantum groups and duality, EMS Textbooks in Mathematics, European Mathematical Society, 2008

[19] Van Daele, Alfons Dual pairs of Hopf *-algebras, Bull. Lond. Math. Soc., Volume 25 (1993) no. 3, pp. 209-230 | Zbl

[20] Wang, Shuzhou Quantum symmetry groups of finite spaces, Commun. Math. Phys., Volume 195 (1998) no. 1, pp. 195-211

[21] Woronowicz, Stanisław L. Compact matrix pseudogroups, Commun. Math. Phys., Volume 111 (1987) no. 4, pp. 613-665 | Zbl

[22] Woronowicz, Stanisław L. A remark on compact matrix quantum groups, Lett. Math. Phys., Volume 21 (1991) no. 1, pp. 35-39

Cited by Sources: