# ANNALES DE L'INSTITUT FOURIER

Almost-Einstein manifolds with nonnegative isotropic curvature
Annales de l'Institut Fourier, Volume 60 (2010) no. 7, p. 2493-2501
Let $\left(M,g\right)$, $n\ge 4$, be a compact simply-connected Riemannian $n$-manifold with nonnegative isotropic curvature. Given $0, we prove that there exists $\epsilon =\epsilon \left(l,L,n\right)$ satisfying the following: If the scalar curvature $s$ of $g$ satisfies$l\le s\le L$and the Einstein tensor satisfies$\left|\mathrm{Ric}\phantom{\rule{0.166667em}{0ex}}-\frac{s}{n}g\right|\le \epsilon$then $M$ is diffeomorphic to a symmetric space of compact type.This is related to the result of S. Brendle on the metric rigidity of Einstein manifolds with nonnegative isotropic curvature.
$\phantom{\rule{-0.166667em}{0ex}}$Soit $\left(M\phantom{\rule{-0.166667em}{0ex}},g\right)$, une variété riemannienne compacte simplement connexe de dimension $n\ge 4$, à courbure isotrope positive ou nulle. Nous montrons que pour tout $0, il existe un $\epsilon =\epsilon \left(l,L,n\right)$ qui satisfait la propriété suivante : si la courbure scalaire $s$ de $g$ satisfait$l\le s\le L$et que le tenseur d’Einstein satisfait$\left|\mathrm{Ric}\phantom{\rule{0.166667em}{0ex}}-\frac{s}{n}g\right|\le \epsilon$alors $M$ est difféomorphe à un espace symétrique de type compact.Ceci est lié au résultat de S. Brendle sur la rigidité métrique des variétés d’Einstein à courbure isotrope positive ou nulle.
DOI : https://doi.org/10.5802/aif.2616
Classification:  53C21
Keywords: Almost-Einstein manifolds, non-negative isotropic curvature
@article{AIF_2010__60_7_2493_0,
title = {Almost-Einstein manifolds with nonnegative isotropic curvature},
journal = {Annales de l'Institut Fourier},
publisher = {Association des Annales de l'institut Fourier},
volume = {60},
number = {7},
year = {2010},
pages = {2493-2501},
doi = {10.5802/aif.2616},
zbl = {1225.53037},
mrnumber = {2866997},
language = {en},
url = {https://aif.centre-mersenne.org/item/AIF_2010__60_7_2493_0}
}

Seshadri, Harish. Almost-Einstein manifolds with nonnegative isotropic curvature. Annales de l'Institut Fourier, Volume 60 (2010) no. 7, pp. 2493-2501. doi : 10.5802/aif.2616. https://aif.centre-mersenne.org/item/AIF_2010__60_7_2493_0/

 Brendle, Simon Einstein manifolds with nonnegative isotropic curvature are locally symmetric (to appear in Duke Mathematical Journal) | MR 2573825 | Zbl 1189.53042

 Brendle, Simon; Schoen, Richard Manifolds with $1/4$-pinched curvature are space forms, J. Amer. Math. Soc., Tome 22 (2009) no. 1, pp. 287-307 | Article | MR 2449060 | Zbl pre05859406

 Koiso, Norihito Rigidity and stability of Einstein metrics—the case of compact symmetric spaces, Osaka J. Math., Tome 17 (1980) no. 1, pp. 51-73 | MR 558319 | Zbl 0426.53037

 Micallef, Mario J.; Moore, John Douglas Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2), Tome 127 (1988) no. 1, pp. 199-227 | Article | MR 924677 | Zbl 0661.53027

 Micallef, Mario J.; Wang, Mckenzie Y. Metrics with nonnegative isotropic curvature, Duke Math. J., Tome 72 (1993) no. 3, pp. 649-672 | Article | MR 1253619 | Zbl 0804.53058

 Petersen, Peter; Tao, Terence Classification of almost quarter-pinched manifolds, Proc. Amer. Math. Soc., Tome 137 (2009) no. 7, pp. 2437-2440 | Article | MR 2495279 | Zbl 1168.53020

 Petrunin, A.; Tuschmann, W. Diffeomorphism finiteness, positive pinching, and second homotopy, Geom. Funct. Anal., Tome 9 (1999) no. 4, pp. 736-774 | Article | MR 1719602 | Zbl 0941.53026

 Seshadri, H. Manifolds with nonnegative isotropic curvature (To appear in Communications in Analysis and Geometry, http://www.math.iisc.ernet.in/~harish/papers/pic-cag.pdf) | MR 2601346

 Topping, Peter Lectures on the Ricci flow, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, Tome 325 (2006) | MR 2265040 | Zbl 1105.58013