Let , , be a compact simply-connected Riemannian -manifold with nonnegative isotropic curvature. Given , we prove that there exists satisfying the following: If the scalar curvature of satisfies
and the Einstein tensor satisfies
then is diffeomorphic to a symmetric space of compact type.
This is related to the result of S. Brendle on the metric rigidity of Einstein manifolds with nonnegative isotropic curvature.
Soit , une variété riemannienne compacte simplement connexe de dimension , à courbure isotrope positive ou nulle. Nous montrons que pour tout , il existe un qui satisfait la propriété suivante : si la courbure scalaire de satisfait
et que le tenseur d’Einstein satisfait
alors est difféomorphe à un espace symétrique de type compact.
Ceci est lié au résultat de S. Brendle sur la rigidité métrique des variétés d’Einstein à courbure isotrope positive ou nulle.
Keywords: Almost-Einstein manifolds, non-negative isotropic curvature
Mot clés : variétés presque-Einstein, courbure isotrope positive ou nulle
@article{AIF_2010__60_7_2493_0, author = {Seshadri, Harish}, title = {Almost-Einstein manifolds with nonnegative isotropic curvature}, journal = {Annales de l'Institut Fourier}, pages = {2493--2501}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {7}, year = {2010}, doi = {10.5802/aif.2616}, mrnumber = {2866997}, zbl = {1225.53037}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2616/} }
TY - JOUR AU - Seshadri, Harish TI - Almost-Einstein manifolds with nonnegative isotropic curvature JO - Annales de l'Institut Fourier PY - 2010 SP - 2493 EP - 2501 VL - 60 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2616/ DO - 10.5802/aif.2616 LA - en ID - AIF_2010__60_7_2493_0 ER -
%0 Journal Article %A Seshadri, Harish %T Almost-Einstein manifolds with nonnegative isotropic curvature %J Annales de l'Institut Fourier %D 2010 %P 2493-2501 %V 60 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2616/ %R 10.5802/aif.2616 %G en %F AIF_2010__60_7_2493_0
Seshadri, Harish. Almost-Einstein manifolds with nonnegative isotropic curvature. Annales de l'Institut Fourier, Volume 60 (2010) no. 7, pp. 2493-2501. doi : 10.5802/aif.2616. https://aif.centre-mersenne.org/articles/10.5802/aif.2616/
[1] Einstein manifolds with nonnegative isotropic curvature are locally symmetric (to appear in Duke Mathematical Journal) | MR | Zbl
[2] Manifolds with -pinched curvature are space forms, J. Amer. Math. Soc., Volume 22 (2009) no. 1, pp. 287-307 | DOI | MR
[3] Rigidity and stability of Einstein metrics—the case of compact symmetric spaces, Osaka J. Math., Volume 17 (1980) no. 1, pp. 51-73 | MR | Zbl
[4] Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2), Volume 127 (1988) no. 1, pp. 199-227 | DOI | MR | Zbl
[5] Metrics with nonnegative isotropic curvature, Duke Math. J., Volume 72 (1993) no. 3, pp. 649-672 | DOI | MR | Zbl
[6] Classification of almost quarter-pinched manifolds, Proc. Amer. Math. Soc., Volume 137 (2009) no. 7, pp. 2437-2440 | DOI | MR | Zbl
[7] Diffeomorphism finiteness, positive pinching, and second homotopy, Geom. Funct. Anal., Volume 9 (1999) no. 4, pp. 736-774 | DOI | MR | Zbl
[8] Manifolds with nonnegative isotropic curvature (To appear in Communications in Analysis and Geometry, http://www.math.iisc.ernet.in/~harish/papers/pic-cag.pdf) | MR
[9] Lectures on the Ricci flow, London Mathematical Society Lecture Note Series, 325, Cambridge University Press, Cambridge, 2006 | MR | Zbl
Cited by Sources: