Characteristic homomorphism for (F 1 ,F 2 )-foliated bundles over subfoliated manifolds
Annales de l'Institut Fourier, Tome 34 (1984) no. 3, pp. 219-245.

Dans ce travail on donne une construction des classes caractéristiques pour un sous-feuilletage (F 1 ,F 2 ), en suivant les méthodes de Kamber et Tondeur. Pour cela, on introduit la notion de fibré principal (F 1 ,F 2 )-feuilleté, et on définit un homomorphisme caractéristique qui lui est associé. On étudie la relation avec les homomorphismes caractéristiques des fibrés F i -feuilletés, i=1,2, et on calcule l’algèbre des classes caractéristiques en utilisant les résultats de Kamber et Tondeur sur la cohomologie de g-DG-algèbres. Finalement, on généralise les résultats de Goldman sur la restriction à une feuille d’un fibré feuilleté, et on définit l’homomorphisme d’holonomie d’une feuille d’un sous-feuilletage.

In this paper a construction of characteristic classes for a subfoliation (F 1 ,F 2 ) is given by using Kamber-Tondeur’s techniques. For this purpose, the notion of (F 1 ,F 2 )-foliated principal bundle, and the definition of its associated characteristic homomorphism, are introduced. The relation with the characteristic homomorphism of F i -foliated bundles, i=1,2, the results of Kamber-Tondeur on the cohomology of g-DG-algebras. Finally, Goldman’s results on the restriction of foliated bundles to the leaves of a foliation are generalized, and the holonomy homomorphism of a leaf of a subfoliation is defined.

@article{AIF_1984__34_3_219_0,
     author = {Carball\'es, Jos\'e Manuel},
     title = {Characteristic homomorphism for $(F_1,F_2)$-foliated bundles over subfoliated manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {219--245},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {34},
     number = {3},
     year = {1984},
     doi = {10.5802/aif.984},
     zbl = {0519.57022},
     mrnumber = {86c:57024},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.984/}
}
TY  - JOUR
AU  - Carballés, José Manuel
TI  - Characteristic homomorphism for $(F_1,F_2)$-foliated bundles over subfoliated manifolds
JO  - Annales de l'Institut Fourier
PY  - 1984
SP  - 219
EP  - 245
VL  - 34
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.984/
DO  - 10.5802/aif.984
LA  - en
ID  - AIF_1984__34_3_219_0
ER  - 
%0 Journal Article
%A Carballés, José Manuel
%T Characteristic homomorphism for $(F_1,F_2)$-foliated bundles over subfoliated manifolds
%J Annales de l'Institut Fourier
%D 1984
%P 219-245
%V 34
%N 3
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.984/
%R 10.5802/aif.984
%G en
%F AIF_1984__34_3_219_0
Carballés, José Manuel. Characteristic homomorphism for $(F_1,F_2)$-foliated bundles over subfoliated manifolds. Annales de l'Institut Fourier, Tome 34 (1984) no. 3, pp. 219-245. doi : 10.5802/aif.984. https://aif.centre-mersenne.org/articles/10.5802/aif.984/

[1] G. Andrzejczak, Some characteristic invariants of foliated bundles, Institute of Mathematics, Polish Academy of Sciences, Preprint 182, Warszawa, 1979.

[2] R. Bott, Lectures on characteristic classes and foliations, Lecture Notes in Math., Vol. 279, Springer, Berlin, 1972. | MR | Zbl

[3] L.A. Cordero and P.M. Gadea, Exotic characteristic classes and subfoliations, Ann. Inst. Fourier, Grenoble, 26-1 (1976), 225-237 ; errata, ibid. 27, fasc. 4 (1977). | Numdam | MR | Zbl

[4] L.A. Cordero and X. Masa, Characteristic classes of subfoliations, Ann. Inst. Fourier, Grenoble, 31-2 (1981), 61-86. | Numdam | MR | Zbl

[5] B.L. Feigin, Characteristic classes of flags of foliations, Funct. Anal. and its Appl., 9 (1975), 312-317. | MR | Zbl

[6] R. Goldman, The holonomy ring of the leaves of foliated manifolds, J. Differential Geometry, 11 (1976), 411-449. | MR | Zbl

[7] F.W. Kamber and Ph. Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Math., Vol 493, Springer, Berlin, 1975. | MR | Zbl

[8] X. Masa, Characteristic classes of subfoliations II, preprint.

[9] R. Moussu, Sur les classes exotiques des feuilletages, Lecture Notes in Math., Vol. 392, Springer, Berlin, 1974, 37-42. | MR | Zbl

[10] B.L. Reinhart, Holonomy invariants for framed foliations, Lecture Notes in Math., Vol. 392, Springer, Berlin, 1974, 47-52. | MR | Zbl

Cité par Sources :