Soient une -algèbre, un groupe compact abélien, une action de sur la sous-algèbre des points fixes de et la sous-algèbre dense de , des éléments -finis. Soit ensuite un opérateur linéaire de dans qui commute avec et qui est nul sur . Nous prouvons que est une dissipation complète si et seulement si est fermable et sa clôture est le générateur d’un semi-groupe de type de contractions complètement positives. Ces dissipations complètes sont classifiées à l’aide de certaines applications de type négatif tordu du groupe dual dans des opérateurs dissipatifs, affiliés au centre de l’algèbre des multiplicateurs de . Dans ce cadre, il est également établi que les dissipations complètes forment un sous-ensemble propre des dissipations générales, sauf pour le cas où est une -algèbre abélienne.
Let be a -algebra, a compact abelian group, an action of by -automorphisms of the fixed point algebra of and the dense sub-algebra of -finite elements in . Further let be a linear operator from into which commutes with and vanishes on . We prove that is a complete dissipation if and only if is closable and its closure generates a -semigroup of completely positive contractions. These complete dissipations are classified in terms of certain twisted negative definite maps from the dual group into dissipative operators affiliated with the center of the multiplier algebra of . We also argue that the complete dissipation property is strictly stronger than the usual dissipation property, except in special circumstances such as when is abelian.
@article{AIF_1984__34_3_155_0, author = {Bratteli, Ola and Jorgensen, Palle E. T. and Kishimoto, Akitaka and Robinson, Donald W.}, title = {A $C^*$-algebraic {Schoenberg} theorem}, journal = {Annales de l'Institut Fourier}, pages = {155--187}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {34}, number = {3}, year = {1984}, doi = {10.5802/aif.981}, zbl = {0536.46046}, mrnumber = {86b:46105}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.981/} }
TY - JOUR AU - Bratteli, Ola AU - Jorgensen, Palle E. T. AU - Kishimoto, Akitaka AU - Robinson, Donald W. TI - A $C^*$-algebraic Schoenberg theorem JO - Annales de l'Institut Fourier PY - 1984 SP - 155 EP - 187 VL - 34 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.981/ DO - 10.5802/aif.981 LA - en ID - AIF_1984__34_3_155_0 ER -
%0 Journal Article %A Bratteli, Ola %A Jorgensen, Palle E. T. %A Kishimoto, Akitaka %A Robinson, Donald W. %T A $C^*$-algebraic Schoenberg theorem %J Annales de l'Institut Fourier %D 1984 %P 155-187 %V 34 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.981/ %R 10.5802/aif.981 %G en %F AIF_1984__34_3_155_0
Bratteli, Ola; Jorgensen, Palle E. T.; Kishimoto, Akitaka; Robinson, Donald W. A $C^*$-algebraic Schoenberg theorem. Annales de l'Institut Fourier, Tome 34 (1984) no. 3, pp. 155-187. doi : 10.5802/aif.981. https://aif.centre-mersenne.org/articles/10.5802/aif.981/
[1] Unbounded negative definite functions, Can J. Math., 33 (1981), 862-871. | MR | Zbl
and ,[2] Normal positive linear mappings of norm 1 from a von Neumann algebra into its commutant and its application, Pub. RIMS, Kyoto, 8 (1972/1973), 439-469. | MR | Zbl
,[3] Subalgebras of C*-algebras, Acta Math., 123 (1969), 141-224. | MR | Zbl
,[4] Potential Theory on Locally Compact Abelian Groups, Springer-Verlag, Berlin-Heidelberg-New York, 1975. | MR | Zbl
and ,[5] Decomposition of unbounded derivations into invariant and approximately inner parts, Crelle's Journal, 346 (1984), 166-193. | MR | Zbl
, and ,[6] Dynamical semigroups commuting with compact abelian actions, Ergod. Th. & Dynam. Sys., 3 (1983), 187-217. | MR | Zbl
and ,[7] Unbounded *-derivations and infinitesimal generators on operator algebra in Proceedings Symp. in Pure Math., Vol. 38 Part 2, 353-365, AMS Providence, R.I. (1982). | MR | Zbl
and ,[8] Unbounded derivations tangential to compact groups of automorphisms, J. Funct. Anal., 48 (1982), 107-133. | MR | Zbl
and ,[9] Operator Algebras and Quantum Statistical Mechanics, Vol I, Springer-Verlag, New York, 1979. | MR | Zbl
and ,[10] Operator Algebras and Quantum Statistical Mechanics, Vol. II Springer-Verlag, New York, 1981. | MR | Zbl
and ,[11] positive C0-semigroups on C*-algebras, Math. Scand., 49 (1981), 259-274. | MR | Zbl
and ,[12] Some assorted inequalities for positive linear maps on C*-algebras, J. Operator Theory, 4 (1980), 271-285. | MR | Zbl
,[13] Cohomology of operator algebras and quantum dynamical semigroups, J. London Math. Soc. (2), 20 (1978), 358-368. | Zbl
and ,[14] Positive linear maps on operator algebras, Commun. Math. Phys., 48 (1976), 15-22. | MR | Zbl
,[15] The generators of positive semigroups, J. Funct. Anal., 32 (1979), 207-212. | MR | Zbl
and ,[16] The theory of matrices, Vol. 1, Chelsea Publishing Co., New York, 1959. | Zbl
,[17] Dissipations and derivations, Commun. Math. Phys., 47 (1976), 25-32. | MR | Zbl
,[18] On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48 (1976), 119-130. | MR | Zbl
,[19] Normed Algebras, Walters-Noordhoff, Groningen, 1972.
,[20] Ergodic actions of compact abelian groups, J. Operator Theory, 3 (1980), 237-269. | MR | Zbl
, and ,[21] Positive definite kernels, continuous tensor products, and central limit theorems of probability theory, SLN 272, Springer-Verlag, Berlin, 1972. | MR | Zbl
and ,[22] C*-algebras and their Automorphism Groups, Academic Press, London, 1979. | MR | Zbl
,[23] Strongly positive semigroups and faithful invariant states, Commun. Math. Phys., 85 (1982), 129-142. | MR | Zbl
,[24] Developments in the theory of unbounded derivations in C*-algebras, in Operator Algebras and Applications, Proceedings of Symp. Pure Math, Vol. 38 Part 1, 309-311. AMS, Providence R.I. (1980). | MR | Zbl
,[25] Metric spaces and positive definite functions, Trans. Amer Math. Soc., 44 (1938), 522-536. | JFM | MR | Zbl
,[26] Bemerkungen zur Theorie der beschränkten bilinearformen mit unendlich vielen Veränderlichen, J. für die reine u.ang. Math., 140 (1911), 1-28. | JFM
,[27] A non-commutative version of abstract integration, Ann. Math., 57 (1953), 401-457. | MR | Zbl
,[28] On factor representations and the C*algebra of the canonical commutation relations, Commun. Math. Phys., 24 (1971), 151-170. | MR | Zbl
,[29] Positive function on C*algebras, Proc. Amer. Math. Soc., 6 (1955), 211-216. | MR | Zbl
,[30] On unbounded operators in Hilbert space, J. Indian Math. Soc., 15 (1951), 155-192. | MR | Zbl
,[31] Positive linear maps on C*-algebras, Can. J. Math., 24 (1972), 520-529. | MR | Zbl
,[32] L'intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1940. | JFM | MR | Zbl
,Cité par Sources :