Let be the universal connection on the bundle . Given a principal -bundle with connection , we determine the homotopy type of the space of maps of into such that is isomorphic to . Here denotes pull-back.
Soit la connexion universelle du fibré . Étant donné un -fibré principal muni d’une connexion , on détermine le type homotopique de l’espace des applications de dans telles que soit isomorphe à . (On désigne par l’image réciproque.)
@article{AIF_1982__32_1_263_0, author = {Ramadas, T. R.}, title = {On the space of maps inducing isomorphic connections}, journal = {Annales de l'Institut Fourier}, pages = {263--276}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, number = {1}, year = {1982}, doi = {10.5802/aif.868}, zbl = {0466.55011}, mrnumber = {84h:53038}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.868/} }
TY - JOUR AU - Ramadas, T. R. TI - On the space of maps inducing isomorphic connections JO - Annales de l'Institut Fourier PY - 1982 SP - 263 EP - 276 VL - 32 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.868/ DO - 10.5802/aif.868 LA - en ID - AIF_1982__32_1_263_0 ER -
Ramadas, T. R. On the space of maps inducing isomorphic connections. Annales de l'Institut Fourier, Volume 32 (1982) no. 1, pp. 263-276. doi : 10.5802/aif.868. https://aif.centre-mersenne.org/articles/10.5802/aif.868/
[1] Gauge Theory in terms of projector valued fields, Physics Letters, 82B, 251 (1979).
and ,[2] Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, séminaire, Collège de France (1964-1965).
,[3] Quantization of nonabelian gauge theories, Nuclear Physics, B 139 (1978), 1.
,[4] Existence of universal connections, Amer. J. Math., 83 (1961), 573-572. | MR | Zbl
and ,[5] Geometry of SU(2) gauge-fields, Commun. Math. Phys., 67 (1979), 121-136. | MR | Zbl
and ,[6] Universal Connections, Inventiones Math., 59 (1980), 59-65. | MR | Zbl
,[7] Some remarks on the Gribov ambiguity, Commun. Math. Phys., 60 (1978), 7-12. | MR | Zbl
,Cited by Sources: