T. R. RAMADAS

On the space of maps inducing isomorphic connections

<http://www.numdam.org/item?id=AIF_1982__32_1_263_0>
ON THE SPACE
OF MAPS INDUCING ISOMORPHIC CONNECTIONS

by T.R. RAMADAS

1. Introduction.

In this paper we prove the following

Theorem. Let \(M \) be a smooth compact manifold, \(P \) a principal bundle on \(M \) with the unitary group \(U(k) \) as structure group, \(A \) a smooth connection on \(P \), and \(\text{Aut} A \) the group of gauge transformations [i.e., automorphisms of \(P \) which act trivially on \(M \)] which leave \(A \) invariant. Let \(B \) be the Grassmanian of \(k \)-planes in a separable Hilbert space \(\mathcal{H} \), \(E \) the Stiefel bundle of orthonormal \(k \) frames in \(\mathcal{H} \), and \(\omega \) the canonical universal connection on \(E \). Denote by \(\Sigma(A) \) the space of maps \(p : M \to B \) such that the pull-back bundle \(p^*(E) \), with the connection \(p^*\omega \), is isomorphic to \((P, A) \).

Then the space \(\Sigma(A) \), with the \(C^\infty \) topology, has the homotopy type of \(B_{\text{Aut}A} \) where \(B_{\text{Aut}A} \) is the base-space of a universal bundle for \(\text{Aut} A \).

The connectedness of \(\Sigma(A) \) is shown in [6]. We use some ideas from this paper.

To motivate this result, consider the case when \(P \) is a principal \(G \)-bundle with \(G \) a compact Lie group. Let \(\text{Aut} P \) denote the group of gauge transformations of \(P \). Denote by \(\mathcal{E} \) the space of \(C^\infty \) connections on \(P \). The group \(\text{Aut} P \) acts on \(\mathcal{E} \), though not freely in general. Denote by \(\mathcal{Q} \) the quotient.
By [4] there exists a finite dimensional principal G-bundle \(E(G, M) \rightarrow B(G, M) \) with connection such that the following diagram commutes, and the map \(\varphi \) is onto:

\[
\begin{array}{ccc}
\text{Mor}_G(P, E(G, M)) & \xrightarrow{\varphi} & \mathcal{C} \\
\downarrow \text{Aut P} & & \downarrow \mathcal{L} \\
\text{Mor}_P(M, B(G, M)) & \xrightarrow{\mathcal{L}} & \mathcal{C}
\end{array}
\]

Here \(\text{Mor}_G(P, E(G, M)) \) is the space of G-morphisms of P into E and \(\text{Mor}_P(M, B(G, M)) \) is the component of \(C^\infty(M, B(G, M)) \) which induces pull-back bundles isomorphic to P. \(\mathcal{L} \) is the map given by pulling back the universal connection on \(E(G, M) \).

We wish to investigate the fibres of the map \(\mathcal{L} \). It is possible to do so when we consider instead of \(E(G, M) \) a universal bundle \(E_\mathcal{G} \) with connection such that \(E_\mathcal{G} \) is contractible. Suppose then, that in the above diagram we replace \(E(G, M) \) by \(E_\mathcal{G} \) and \(B(G, M) \) by \(B_\mathcal{G} \). Let \(A \in \mathcal{C} \) and \(\mathcal{A} \) its class in \(\mathcal{C} \). We argue heuristically:

The spaces \(\mathcal{C} \) and \(\text{Mor}_G(P, E_\mathcal{G}) \) are both contractible. This would imply that \(\varphi^{-1}(A) \) is contractible (all the mappings being assumed to be good fibrations). The group \(\text{Aut} A \) acts on \(\varphi^{-1}(A) \) to give \(\mathcal{L}^{-1}(\mathcal{A}) \). If all goes well this implies

a) \(\varphi^{-1}(A) \rightarrow \mathcal{L}^{-1}(\mathcal{A}) \) is a universal \(\text{Aut} A \) bundle. The fibre over \(A \) of the map \(\mathcal{L} \) has the same homotopy type as \(B(\text{Aut} A) \).

b) If \(G \) has trivial centre and all connections are generic (i.e. \(\text{Aut} P \) acts freely on \(\mathcal{C} \)) \(\mathcal{L} \) has a section.

The quotient space \(\mathcal{C} \) is relevant in studies of Yang-Mills theories, at present very popular in Physics. It has been pointed out [1] that the Universal Connection Theorem could possibly provide connections between Yang-Mills theories and so-called o-models which concern themselves with the space \(\text{Mor}(M, B) \). Also in the cases when \(\mathcal{L} \) has a section, it could give an alternative to "gauge-fixing" which has been shown to be impossible in general [3, 7, 5].

The paper is organized as follows. In § 2 we imbed E and B as closed submanifolds of Hilbert spaces. In § 3 we describe a one parameter family of isometries \(A_\tau : \mathcal{K} \rightarrow \mathcal{K} \), and also give the
C°° topology to be used on the function spaces Mor_U(k)(P, E) and Mor_p(M, B). In § 4 we prove that \(\varphi^{-1}(A) \) is contractible [Proposition 4.1] using the isometries \(A_y \). Then we prove [Proposition 4.3] that \(\varphi^{-1}(A) \rightarrow \mathcal{L}^{-1}(A) \) is a locally trivial principal fibre space with Aut A as structure group. This involves, among other things, proving that the above projection is closed [Lemma 4.4], which is done by studying a certain differential equation. The completeness of the \(C^\infty \) topology is crucial, and the imbeddings obtained in § 2 simplify proofs throughout.

I would like to thank M.S. Narasimhan for several suggestions and much encouragement. I also thank M.S. Raghunathan, S. Ramanan and V. Sunder for their help.

2. The bundle of orthonormal \(k \)-frames in a Hilbert space.

Fix an integer \(k > 0 \). Let \(\mathcal{H} \) be an infinite dimensional separable Hilbert space over the complex numbers. Denote by \(E \) the space of orthonormal \(k \)-frames in \(\mathcal{H} \). The group \(U(k) \) acts on \(E \) on the right and the quotient is the Grassmannian \(B \) of \(k \)-dimensional subspaces of \(\mathcal{H} \). In fact \(E \) is a universal principal bundle for \(U(k) \). It also carries a natural connection, which is a universal connection for \(U(k) \).

It will be useful, in the following, to have characterizations of \(E \) and \(B \) as closed submanifolds of Hilbert spaces.

We shall identify a point \(p \) in \(B \) with the orthogonal projector onto the corresponding subspace, denoted by \(H(p) \). Thus \(H(p) = \{ x \in \mathcal{H} \mid px = x \} \). For \(p_0 \in B \), define

\[\mathcal{R}_0 = \{ p \in B \mid H(p_0) \cap \ker p = \{0\} \}. \]

Then we have a bijection \(L_0 : \mathcal{R}_0 \rightarrow \mathcal{L}(H(p_0), \ker p_0) \) such that for \(p \in \mathcal{R}_0 \) its image \(L \equiv L_0(p) \) has \(H(p) \) as graph.

Lemma 2.1 [2]. - The charts \(\{ (\mathcal{R}_0, L_0) \} \) give \(B \) the structure of a \(C^\infty \) Hilbert manifold.

Let \(\mathcal{H}_2 \) denote the Hilbert space of Hilbert-Schmidt operators on \(\mathcal{H} \).
PROPOSITION 2.2. — Let \(\psi \) denote the injection \(B \rightarrow \mathcal{S}_2 \) given by associating to each \(k \)-dimensional subspace its orthogonal projector. Then \(\psi \) is a \(C^\infty \) immersion, and a homeomorphism onto its image.

Proof. — Follows from Lemmas 2.3 and 2.4.

Remark. — This shows that \(B \), with the manifold structure given in Lemma 2.1 is a submanifold of \(\mathcal{S}_2 \).

LEMMA 2.3. — On a chart \((\mathcal{S}_0, L_0)\) \(\psi \) is given by \((1 - 3)\). It is a \(C^\infty \) immersion.

Proof. — Let \(L \in \mathcal{S}(H(p_0), \ker p_0) \) and let \(p = \psi L_0^{-1}(L) \). Write

\[
p = A + LA
\]

where \(A : \mathcal{S} \rightarrow H(p_0) \). Then we claim that \(A \) satisfies

\[
A = p_0 + L^+(1 - p_0) - L^+LA
\]

which can be solved to give

\[
A = \frac{1}{1 + L^+L} \left(p_0 + L^+(1 - p_0) \right).
\]

To see that \(p \) given by (2.1)-(2.3) is indeed equal to \(\psi L_0^{-1}(L) \), we verify:

a) Image of \(p = \{ x + Lx \mid x \in H(p_0) \} \). The map is clearly into this set. In fact it is onto since \(A \) is invertible on \(H(p_0) \).

b) \(p^2 = p \). This follows since \(Ap = p \), which in turn is clear because \(Ap \) satisfies the same equation as \(p \).

\[
Ap = p_0p + L^+(1 - p_0)p - L^+LAp = A + L^+LA - L^+LAp = p_0 + L^+(1 - p_0) - L^+LAp.
\]

c) \(p \) is an orthogonal projector, for

\[
\ker p = \{ y - L^+y \mid y \in \ker p_0 \}
\]

which is the orthogonal subspace to \(\operatorname{Im} p \).

(i) \(\psi \) is \(C^\infty \) : To see this split \(\psi \) into the steps:
\[\mathcal{E}(\mathcal{E}, H(p_0)) \to \mathcal{E}(\mathcal{E}, \mathcal{E})\]

\[\{p_0 + L^*(1 - p_0)\} \to \{p_0 + L^*(1 - p_0)\}\]

\[\mathcal{E}(H(p_0), \ker p_0) \to \mathcal{E}(H(p_0), H(p_0)) \to \mathcal{E}(\mathcal{E}, \mathcal{E})\]

\[\{L^*L\} \to \left\{ \frac{1}{1 + L^*L} \right\} \to \left\{ p_0 \left[\frac{1}{1 + L^*L} \right] p_0 \right\}\]

\(\psi\) is in fact real-analytic.

(ii) It is enough to check the differential at \(L = 0\). Here \(\delta p = \delta L^* (1 - p_0) + p_0 \delta L\) which is clearly injective. Also the image, being defined by \(p_0 \delta pp_0 = (1 - p_0) \delta p (1 - p_0) = 0\) and \(\delta p^* = \delta p\), is closed, and hence admits a supplement.

Lemma 2.4. — *The inverse \(\psi^{-1}\) is given by (4) and is continuous.*

Proof. — Consider a chart \((\mathcal{R}_0, L_0)\). Let \(p \in \mathcal{R}_0\) and let \(Q = (p_0|_{H(p)})^{-1}\). Then for \(x \in H(p)\), \(Qx = x + (1 - p_0) p Q x\). This gives, for \(L = (1 - p_0) Q\), \(L = (1 - p_0) p (1 + L)\).

This can be solved to give \(p \overset{\psi^{-1}}{\longrightarrow} L\) such that

\[Lx = (1 - p_0) \frac{1}{1 - (1 - p_0) p} x, x \in H(p_0).\]

(4)

The continuity of \(\psi^{-1}\) follows easily.

We turn now to \(E\). This can be identified with a closed subset of \(\mathcal{E}(\mathbb{C}^k, \mathcal{E})\): \(E = \{U : \mathbb{C}^k \to \mathcal{E} | U^+ U = 1\}\). Standard arguments show:

Lemma 2.5. — *\(E\) is a closed submanifold of \(\mathcal{E}(\mathbb{C}^k, \mathcal{E})\). It is a principal \(U(k)\) bundle on \(B\). The \(u(k)\)-valued one-form \(U^+ dU\) is a connection on \(E\).*
LEMMA 2.6. – \(E \) is contractible and hence a universal \(U(k) \) bundle. The connection is a universal \(U(k) \) connection.

Proof. – Both statements are well-known. The first follows also from the remarks after Lemma 4.2. The second is a consequence of the Universal Connection Theorem.

3. Some preliminary remarks and definitions.

(i) A one-parameter-family of isometries on \(\mathcal{H} \).

Following [6], we introduce, on \(\mathcal{H} \), a one-parameter family of isometries which we will use later. Define, for \(t \in [0, 1] \) an isometry \(A_t : \mathcal{H} \to \mathcal{H} \) as follows. Fix an orthonormal basis, so that \(\mathcal{H} \approx \) \{square-summable sequences in \(\mathbb{C} \)\}. Then let \(A_0 = \) Identity

\[
A_t(a_0, a_1, a_2, \ldots) = (a_0, a_1 \ldots a_{n-2}, a_{n-1} \cos \theta_n(t), a_{n-1} \sin \theta_n(t), \ldots)
\]

for \(\frac{1}{n + 1} \leq t \leq \frac{1}{n} \) where \(\theta_n(t) = \frac{\pi}{2^n} n[(n + 1) t - 1] \).

The \(A_t \) are continuous in \(t \) w.r. to the strong operator topology. Note that

\[
A \left(\frac{1}{2} \right) (a_0, a_1, \ldots) = (a_0, 0, a_1 0, \ldots) \in \mathcal{H}_{\text{even}}
\]

\[
A(1) (a_0, a_1, \ldots) = (0, a_0, 0, a_1 \ldots) \in \mathcal{H}_{\text{odd}}
\]

where \(\mathcal{H}_{\text{even}} \) and \(\mathcal{H}_{\text{odd}} \) denote obvious subspaces of \(\mathcal{H} \).

(ii) The topology of the function spaces \(\text{Mor}_{U(k)}(P, E) \) \(\text{Mor}(M, B) \).

We topologize \(\text{Mor}_{U(k)}(P, E) \) as a (closed) subset of \(C^\infty(P, \mathcal{E}(\mathcal{C}^k, \mathcal{H})) \), and \(\text{Mor}(M, B) \) as a (closed) subset of \(C^\infty(M, \mathcal{H}_2) \). The \(C^\infty \) topology is described below:

Let \(X \) be a compact manifold and \(\mathcal{F} \) a Hilbert space. Let \(X_1, \ldots, X_q \) be a set of vector fields on \(X \) which together span the tangent space at each point of \(X \). For a multi index \(\alpha = (\alpha_1, \ldots, \alpha_2) \)
set $D^\alpha = X_1^{\alpha_1}, \ldots, X_q^{\alpha_q}$. We make $C^\omega(X, \mathcal{G})$ a Frechet space w.r.
to the seminorms $\|f\|_{\alpha} = \sup_x \|D^\alpha f\|$ where the heavy bars $\| \|$ denote the Hilbert space norm. The topology is clearly independent
of the choice of X_1, \ldots, X_q. If $N \subset \mathcal{G}$ is a closed submanifold then $C^\omega(X, N)$ is a closed subset of $C^\omega(X, \mathcal{G})$ and we give it the relative
topology, which makes it a complete metric space.

We choose now, once and for all, a set of vector fields X_1, \ldots, X_p
spanning the tangent space of M at each point. Let $\tilde{X}_1, \ldots, \tilde{X}_p$ be
their lifts to P w.r. to some connection, and let $\tilde{Y}_1, \ldots, \tilde{Y}_{k^2}$ be
vertical vector fields on P, the images of a fixed basis Y_1, \ldots, Y_{k^2}
in $u(k)$ by the group action. We will use these to determine the
seminorms. Note that $[\tilde{X}_i, \tilde{Y}_\ell] = 0 \ \forall X_i$ and Y_ℓ. We will let
let $\alpha_L = (\alpha_1, \ldots, \alpha_{k^2})$ and $\alpha = (\alpha_1, \ldots, \alpha_p)$, and write the semi-
norms as $\|f\|_{\alpha_L, \alpha} = \sup_x \|D^\alpha L_i D^\alpha\|$.

When there is no need to distinguish between the vertical and
horizontal vectors we simply denote (α_L, α) by γ.

Lemma 3.1. $\text{Mor}_{U(k)}(P, E)$ and $\text{Mor}(M, B)$ are closed sub-
sets of $C^\omega(P, \mathcal{G}(C^k, \mathcal{U}))$ and $C^\omega(M, \mathcal{U}_2)$ respectively. The map $\text{Mor}_{U(k)}(P, E) \rightarrow \text{Mor}(M, B)$ is continuous.

Proof. For $g \in U(k)$ the map $C^\omega(P, E) \rightarrow C^\omega(P, E)$ given
by $f \rightarrow f^g$, $f^g(x) \equiv f(xg)g^{-1}$ $(x \in P)$, is continuous. This follows
since
\[
\|f_1^g - f_2^g\|_{\alpha_L, \alpha} = \sup_{x \in P} \|D^\alpha L_i D^\alpha (f_1(xg)g^{-1} - f_2(xg)g^{-1})\|
\]
\[
= \sup_{x \in P} \|D^\alpha L_i D^\alpha (f_1(xg) - f_2(xg))\|
\]
\[
= \sup_{xg \in P} \|D^{[\alpha_L, \alpha]}_{xg} D^\alpha (f_1(xg) - f_2(xg))\|
\]
\[
= \|f_1 - f_2\|_{[\alpha_2, \alpha], \alpha}
\]
where $D^{[\alpha_L, \alpha]}$ denotes the differential operator
\[
D^{[\alpha_L, \alpha]} = (g^{-1}\tilde{Y}_1g)^{\alpha_1} \ldots (g^{-1}\tilde{Y}_{k^2}g)^{\alpha_{k^2}}.
\]
Here $g^{-1}\tilde{Y}_i g$ is the image of the Lie algebra element $g^{-1}Y_ig$. This
proves the first statement. To prove the second statement, let $f_n \rightarrow f$ in $\text{Mor}_{U(k)}(P, E)$ and let $p_n = f_n f^+_n$. Then
\[\| p_n - p \|_\alpha = \sup_{x \in B} \| D^\alpha (p_n - p) \| \quad \text{(where } D^\alpha = X^\alpha_1 \ldots X^\alpha_n) \]
\[= \sup_{x \in P} \| D^\alpha (p_n - p) \| \quad \text{(where } D^\alpha = \hat{X}^\alpha_1 \ldots \hat{X}^\alpha_n) \]
\[= \sup_{x \in P} \| \sum_{\beta < \alpha} (\alpha \beta) (D^\alpha - \beta f_n D^\beta f^+_n - D^\alpha - \beta f D^\beta f^+) \| \]
\[\leq \alpha \sum_{\beta < \alpha} \| f_n \|_\beta \| f_n - f \|_{\alpha - \beta} + \| f \|_{\alpha - \beta} \| f_n - f \|_\beta . \]
This proves \(p_n \to p \) in \(\text{Mor}(M, B) \).

4. The topology of the fibres.

We will be interested in the fibres of the map \(\varphi \). Consider first a fibre of \(\varphi \).

Proposition 4.1. Let \(A \in \mathcal{C} \). Then \(\varphi^{-1}(A) \) is contractible. In other words the space of morphisms \(P \to E \) which induce a fixed connection on \(P \) is contractible.

Proof. The proof proceeds in two steps.

(i) Define a map \(\xi : \varphi^{-1}(A) \times [0, 1/2] \to \varphi^{-1}(A) \) by
\[\xi_t(f)(x) = A_t \circ f(x) \quad \text{for } f \in \varphi^{-1}(A), \quad x \in P, \quad t \in [0, 1/2]. \]
The map is into \(\varphi^{-1}(A) \) since,

a) \(\xi_t(f)(xg) = A_t \circ f(xg) = A_t \circ f(x) \circ g = \xi_t(f)(x) \circ gU \)

b) \(\xi_t(f)^* d\xi_t(f) = f^* df = A. \)

By lemma 4.2 below \(\xi \) is continuous.

(ii) There exists a \(f_0 \in \varphi^{-1}(A) \) s.t. \(\forall x \in P, f_0(x) \) maps \(\mathcal{C}^k \) into \(\mathcal{C}_{\text{odd}} \) [Apply \(A_1 \) to any \(f \in \varphi^{-1}(A) \) to get such an \(f_0 \)]. Define for \(t \in [1/2, 1] \) a map \(\eta : \varphi^{-1}(A) \times [1/2, 1] \to \varphi^{-1}(A) \) by
\[\eta_t(f)(x)v = (\sin t \pi) A_{1/2} f(x)v - \cos t \pi f_0(x)v. \]
Again the map is into $\varphi^{-1}(A)$. Note that $A_{1/2}f$ maps into $\mathcal{H}_{\text{even}}$. This means that $\forall (x, t)$, $\eta_t f(x)$ defines an isometry of \mathcal{C}_k into \mathcal{H}, for, given $v, v' \in \mathcal{C}_k$,

$$(\eta_t f(x) v, \eta_t f(x) v') = \sin^2 t\pi (A_{1/2} f(x) v, A_{1/2} f(x) v') + (\cos^2 t\pi) (f_0(x) v, f_0(x) v') = (v, v')$$

where $(,)$ denotes the inner product.

The points a), b) above can be checked easily. Lemma 4.2 gives continuity.

(iii) Compose ξ and η to get the contraction

$$\psi : \varphi^{-1}(A) \times [0, 1] \rightarrow \varphi^{-1}(A).$$

(See diagram)

LEMMA 4.2. — The maps ξ, η constructed in the proof of Proposition 4.1 are continuous (in the product topology).

Proof. — Consider the map ξ. Let (f_n, t_n) be a sequence in $\varphi^{-1}(A) \times [0, 1/2]$. Then

$$\|\xi_{t_n}(f_n) - \xi_t(f)\|_\gamma = \sup_{x \in \mathcal{P}} \|A_{t_n} \circ D^\gamma f_n - A_t \circ D^\gamma f\|$$

$$= \sup_{x \in \mathcal{P}} \|A_{t_n} \circ D^\gamma (f_n - f) + (A_{t_n} - A_t) \circ D^\gamma f\|$$

$$\leq \|f_n - f\|_\gamma + \|(A_{t_n} - A_t) f\|_\gamma.$$

This shows continuity of ξ. The continuity of η follows similarly.

Remark. — The proof of Proposition 4.1 can be extended to prove contractivility of $\text{Mor}_{\Omega(k)}(P, E)$. In particular, taking $P = U(k)$, we see that E itself is contractible.
We turn now to the fibres of the map \(\varphi \). Note that if \(A \in \mathcal{C} \) and \(A \in \mathcal{C} \) is its class, then \(\varphi^{-1}(A) \) projects onto \(\varphi^{-1}(A) \). Also if \(\text{Aut} A \) is the subgroup of Aut that leaves \(A \) fixed \(\text{Aut}(A) \) acts freely on \(\varphi^{-1}(A) \), the quotient being in bijection with \(\varphi^{-1}(A) \).

\(\text{Aut} A \) is the space of maps \(\hat{g} : P \longrightarrow U(k) \) such that

1. \(\hat{g}(xh) = h^{-1}g(x)h \quad x \in P, \ h \in U(k) \)
2. \(A = \hat{g}^{-1}Ag + \hat{g}^{-1}d\hat{g} \).

Since \(\hat{g} \in \text{Aut} A \) is determined by its value at a fixed point in \(P \), we shall, fixing \(y_0 \in P \) (projecting onto \(x_0 \in \mathcal{M} \) identify \(\text{Aut} A \ni \hat{g} \sim \hat{g}(y_0) \in U(k) \).

Thus \(\text{Aut} A \) is a closed subgroup of \(U(k) \) [This is seen either from the equation (ii) above, or noting the fact that under the above identification \(\text{Aut} A \) is the centralizer of the holonomy group at \(y_0 \)] and hence a Lie subgroup.

From now on we assume that the vector fields \(\hat{X}_1 \ldots \hat{X}_p \) have been lifted to \(P \) w.r. to \(A \). Note that then \(\hat{X}_i(\hat{g}) = 0 \) for \(\hat{g} \in \text{Aut} A \).

Proposition 4.3. \(\varphi^{-1}(A) \longrightarrow \varphi^{-1}(A) \) is a locally trivial principal fibre space with \(\text{Aut} A \) as structure group.

Proof. — The proof proceeds in four steps.

a) \(\text{Aut} (A) \) acts continuously on \(\varphi^{-1}(A) \). For suppose \((f_n, \hat{g}_n) \in \varphi^{-1}(A) \times \text{Aut} A \) and \((f, \hat{g}) \longrightarrow (f, \hat{g}) \). Then for any \(\alpha_L, \alpha \)

\[
\|f_n \circ \hat{g}_n - f \circ \hat{g}\|_{\alpha_L, \alpha} \leq \|(f_n - f) \circ \hat{g}_n\|_{\alpha_L, \alpha} + \|f \circ (\hat{g}_n - \hat{g})\|_{\alpha_L, \alpha}
\]

\[
= \sup_x \|D^\alpha ([D^\alpha (f_n - f)] \hat{g}_n)\| + \sup_x \|D^\alpha ([D^\alpha f] (\hat{g}_n - \hat{g}))\|
\]

(since \(D^\alpha \hat{g} = 0 \))

\[
= \sup_x \left\| \sum_{\beta_L \leq \alpha_L} (\alpha_L) (\beta_L) D^{\alpha_L - \beta_L} D^\alpha (f_n - f) D^\beta_L \hat{g}_n \right\|
\]

\[
+ \sum_{\beta_L \leq \alpha_L} (\alpha_L) (\beta_L) D^{\alpha_L - \beta_L} D^\alpha f D^\beta_L (\hat{g}_n - \hat{g})
\]

\[
\leq \alpha_L! \sum_{\beta_L \leq \alpha_L} \|f_n - f\|_{\alpha_L - \beta_L, \alpha} \|\hat{g}_n\|_{\beta_L} + \|f\|_{\alpha_L - \beta_L, \alpha} \|\hat{g}_n - \hat{g}\|_{\beta_L}.
\]
Now, for any \(\hat{Y}_i, \hat{g} \in \text{Aut} A \)

\[
\hat{Y}_i(\hat{g}) = \lim_{t \to 0} \frac{\hat{g}(x \exp t Y_i) - \hat{g}(x)}{t} = [\hat{g}(x), Y_i].
\]

Also, if \(\hat{g}_1, \hat{g}_2 \) are in \(\text{Aut} A \), \(d(\text{Tr}(\hat{g}_1 - \hat{g}_2)^* (\hat{g}_1 - \hat{g}_2)) = 0 \), so that \(\|\hat{g}_1(x) - \hat{g}_2(x)\| = \|\hat{g}_1(y_0) - \hat{g}_2(y_0)\| \).

So, we have

\[
\|f_n \circ \hat{g}_n - f \circ \hat{g}\|_{\alpha_L, \alpha} \leq \alpha_L \sum_{\beta_L < \alpha_L} \|f_n - f\|_{\alpha_L - \beta_L, \alpha} \|\hat{g}_n\|_{\beta_L} + \|f\|_{\alpha_L - \beta_L, \alpha} C_{\beta_L} \|\hat{g}_n\|_{\beta_L} \|\hat{g}(p_0) - \hat{g}(p_0)\|
\]

where \(C_{\beta_L} \) is a constant depending on the multiindex \(\beta_L \).

b) Denote by \(G \) the graph of the equivalence relation defined by \(\text{Aut} A \) on \(\varphi^{-1}(A) \). Then the map \(G \to \text{Aut} A \) is continuous. This follows since the map is given by \((f_1, f_2) \mapsto f_1^*(y_0) f_2(y_0) \) which is clearly continuous.

c) The projection \(\varphi^{-1}(A) \to \mathcal{L}^{-1}(\hat{A}) \) is continuous and closed. Continuity follows from lemma 3.1 and lemma 4.4 shows that it is closed. Thus \(\mathcal{L}^{-1}(\hat{A}) \) has the quotient topology w.r. to the projection.

d) Thus we have shown that \(\varphi^{-1}(A) \to \mathcal{L}^{-1}(\hat{A}) \) is a principal fibre space. Now note that there is a \(\text{Aut} A \)-morphism

\[
\varphi^{-1}(A) \to \mathcal{L}^{-1}(\hat{A}) \to E/\text{Aut} A
\]

given by \(f \mapsto f(y_0) \). Since \(E \to E/\text{Aut} A \) is locally trivial, the proof is complete.

\textbf{Lemma 4.4.} — \textit{The map} \(\varphi^{-1}(A) \to \mathcal{L}^{-1}(\hat{A}) \) \textit{is closed.}

\textit{Proof.} — Let \(f_n \in \varphi^{-1}(A) \) s.t. \(p_n = f_n f_n^* \to p \) \textit{in} \(\mathcal{L}^{-1}(\hat{A}) \).

It is enough to prove that \(\{f_n\} \) contains a convergent subsequence. Since \(p_n(x_0) \to p(x_0) \) and \(E \) has compact fibres one
can assume \(f_n(y_0) \to g_0 \in E \) without loss of generality. Note that the \(f_n \) satisfy
\[
d f_n = f_n A + d p_n f_n.
\] (5)

We now prove that the \(f_n \) are Cauchy in the \(C^0 \) norm so that \(\exists \) a \(C^0 \) function \(f \) such that \(f_n \to f \). Put \(D = f_n - f_m \). Then from (5) we have
\[
d(DD^+) = DD^+ d p_n + d p_n DD^+ + d (p_n - p_m) f_m D^+ + D f_m^+ d (p_n - p_m).
\]
Evaluating on a vector field \(X_t \), taking the trace and then absolute value of both sides we get
\[
|X_t \text{Tr}(DD^+)| \leq |\text{Tr}(DD^+ X_t p_n)| + |\text{Tr}(X_t(p_n) DD^+)|
+ |\text{Tr}(X_t(p_n - p_m) f_m D^+)| + |\text{Tr}(D f_m^+ X_t(p_n - p_m))|
\leq 2 \{ \|D\|^2 \|X_t p_n\| + \|D\| \|X_t(p_n - p_m)\| \}
\]
or,
\[
|X_t \|D\|^2 | \leq 2 \{ \|D\|^2 \|X_t p_n\| + \|X_t(p_n - p_m)\| \}.
\] (6)

Consider now the set \(\{X_t, Y_\ell\} \) which we collectively denote by \(\{Z_\ell\} \). They give a map from \(P \times \mathbb{R}^N \) (where \(N = k^2 + p \)) to the tangent bundle \(TP \) which is onto:
\[
(x, (t_1 \ldots t_N)) \mapsto (x, \sum_i t_i Z_i(x)).
\]
Take the obvious metric on the vector bundle \(P \times \mathbb{R}^n \). This induces a splitting of the above map as well as a Riemannian metric on \(P \). Then we have the following obvious result: if \(X \) is a vector field on \(P \) of norm \(\leq 1 \) and we express \(X = \Sigma a_i Z_i \) with respect to the above splitting then \(|a_i| \leq 1 \forall i \).

Now let \(y \in P \) and let \(\Gamma(y) \) be a minimal geodesic joining \(y_0 \) to \(y \) [such a geodesic exists for \(P \) compact] parametrized with respect to arc-length. Then the length of \(\Gamma(y) < T \) for some constant \(T \) independent of \(y \). Now let \(X_t \) be the tangent vector field to \(\Gamma \) (which is necessarily of norm one). This gives
\[
\|X_t (p_n - p_m)\| = \sum_i \|p_n - p_m\|_i \text{ where } \|p\|_i = \sup_x \|Z_i p\|
= \sum_{|\alpha| = 1} \|p_n - p_m\|_\alpha.
\]
Thus we have, from (6)
\[
|X_t \|D\|^2 | = 2 \{ a \|D\|^2 + b \|D\| \}
\]
with
\[a = \sum_{|\alpha| = 1} \|p\|_\alpha + c , \ c > 0 \]
and
\[b = \sum_a \|p_n - p_m\|_\alpha . \]

Consider the ordinary differential equation
\[
\frac{du^2}{dt^2} = 2(au^2 + bu) \]
\[u(0) = D(y_0) . \]
The solution is clearly:
\[u(t) = D(y_0) e^{at} + \frac{(e^{at} - 1)}{a} b . \]

Consider the set \(K = \{ t \geq 0 \mid \|D(t)\| > u(t) \} \). \(K \) is open, and hence a union of disjoint open intervals. Let \(t_0 \) be its least boundary point. Clearly \(D(t_0) = u(t_0) \). From the polygonal approximations to \(\|D(t_0)\|^2 \) and \(u^2(t) \) it is clear that in an interval \((t_0, t_0 + \epsilon) \) we have \(\|D(t)\| \leq u(t) \). Thus \(K = \emptyset \). We have finally,
\[\|D(y)\| \leq D(y_0) e^{aT} + \frac{(e^{aT} - 1)}{a} b \]
which clearly shows that \(\{f_n\} \) are Cauchy in the \(C^0 \) norm.

Let \(f \) be the \(C^0 \) limit. We now turn back to (5) and ‘bootstrap’ the above result to show that \(f \) is \(C^\infty \) and \(f_n \rightarrow f \) in the \(C^\infty \) topology. Assume, therefore, that \(f \) is \(C^k \) and \(f_n \rightarrow f \) in \(C^k \).

For any multi-index \(\gamma (|\gamma| \geq 1) \) define \(\gamma' \) and \(X^{(\gamma)} \) [here \(X^{(\gamma)} \) is one of the vector fields \(Z_i \)] by \(D^{ \gamma'} = D^{\gamma'} X^{(\gamma)} \) so that \(D^{\gamma'} \) is of order \(|\gamma| - 1 \). Let \(|\gamma| = k + 1 \). Then
\[
D^{\gamma'} f_n = D^{\gamma'} X^{(\gamma)}(f_n) = D^{\gamma'}(f_n A(X^{(\gamma)}) + X^{(\gamma)}(p_n) f_n) \\
= \sum_{\delta < \gamma'} \left(\begin{array}{c} \gamma' \\ \delta \end{array} \right) [D^{\gamma'-\delta} f_n D^\delta A(X^{(\gamma)}) + D^{\gamma'-\delta} X^{(\gamma)}(p_n) D^\delta f_n] .
\]

Then
\[
\|D f_n - \sum_{\delta < \gamma'} \left(\begin{array}{c} \gamma' \\ \delta \end{array} \right) [D^{\gamma'-\delta} f D^\delta A(X^{(\gamma)}) + D^{\gamma'-\delta} X^{(\gamma)}(p) D^\delta f] \| \\
\leq \gamma! \sum_{\delta < \gamma'} \|f_n - f\|_{\gamma'-\delta} \|A(X^{(\gamma)})\|_\delta + \|p_n\|_{\gamma'-\delta, X^{(\gamma)}} \|f_n - f\|_\delta \\
+ \|p_n - p\|_{\gamma'-\delta, X^{(\gamma)}} \|f\|_\delta
\]
where \(\|f\|_{\gamma'-\delta, X^{(\gamma)}} = \sup_x \|D^{\gamma'-\delta} X^{(\gamma)} f\| . \)
This shows $D^\gamma f_n$ tends uniformly to a C^0 function, and hence f is C^{k+1}. By induction f is C^∞ and $f_n \to f$ in $C^\infty(P,E)$. The proof also shows $df = fA + pf$.

Since $\text{Mor}_{U(k)}(P,E)$ is closed, $f \in \text{Mor}_{U(k)}(P,E)$ and $p = ff^+$ by continuity of the projection $\text{Mor}_{U(k)}(P,E) \to \text{Mor}_p(M,B)$. (One can now easily show that $f^+df = A$, thus showing that the fibre $\mathcal{V}^{-1}(A)$ is closed. This is because we have nowhere in the proof used the fact that $p \in \mathcal{V}^{-1}(A)$).

The Theorem stated in the Introduction now follows.

BIBLIOGRAPHY

Manuscrit reçu le 17 août 1981.

T.R. Ramadas,
School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 400005 (India).