On the space of maps inducing isomorphic connections
Annales de l'Institut Fourier, Tome 32 (1982) no. 1, pp. 263-276.

Soit ω la connexion universelle du fibré EU(n)BU(n). Étant donné un U(n)-fibré principal PM muni d’une connexion A, on détermine le type homotopique de l’espace des applications de M dans BU(n) telles que (φ + EU(n),φ + ω) soit isomorphe à (P,A). (On désigne par φ + l’image réciproque.)

Let ω be the universal connection on the bundle EU(n)BU(n). Given a principal U(n)-bundle PM with connection A, we determine the homotopy type of the space of maps φ of M into BU(n) such that (φ + EU(n),φ + ω) is isomorphic to (P,A). Here φ + denotes pull-back.

@article{AIF_1982__32_1_263_0,
     author = {Ramadas, T. R.},
     title = {On the space of maps inducing isomorphic connections},
     journal = {Annales de l'Institut Fourier},
     pages = {263--276},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {32},
     number = {1},
     year = {1982},
     doi = {10.5802/aif.868},
     zbl = {0466.55011},
     mrnumber = {84h:53038},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.868/}
}
TY  - JOUR
AU  - Ramadas, T. R.
TI  - On the space of maps inducing isomorphic connections
JO  - Annales de l'Institut Fourier
PY  - 1982
SP  - 263
EP  - 276
VL  - 32
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.868/
DO  - 10.5802/aif.868
LA  - en
ID  - AIF_1982__32_1_263_0
ER  - 
%0 Journal Article
%A Ramadas, T. R.
%T On the space of maps inducing isomorphic connections
%J Annales de l'Institut Fourier
%D 1982
%P 263-276
%V 32
%N 1
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.868/
%R 10.5802/aif.868
%G en
%F AIF_1982__32_1_263_0
Ramadas, T. R. On the space of maps inducing isomorphic connections. Annales de l'Institut Fourier, Tome 32 (1982) no. 1, pp. 263-276. doi : 10.5802/aif.868. https://aif.centre-mersenne.org/articles/10.5802/aif.868/

[1] M. Dubois-Violette and Y. Georgelin, Gauge Theory in terms of projector valued fields, Physics Letters, 82B, 251 (1979).

[2] A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, séminaire, Collège de France (1964-1965).

[3] V.N. Gribov, Quantization of nonabelian gauge theories, Nuclear Physics, B 139 (1978), 1.

[4] M.S. Narasimhan and S. Ramanan, Existence of universal connections, Amer. J. Math., 83 (1961), 573-572. | MR | Zbl

[5] M.S. Narasimhan and T.R. Ramadas, Geometry of SU(2) gauge-fields, Commun. Math. Phys., 67 (1979), 121-136. | MR | Zbl

[6] R. Schlafly, Universal Connections, Inventiones Math., 59 (1980), 59-65. | MR | Zbl

[7] I.M. Singer, Some remarks on the Gribov ambiguity, Commun. Math. Phys., 60 (1978), 7-12. | MR | Zbl

Cité par Sources :