Nous montrons que, pour certaines -algèbres, le noyau de toutes les traces finies est engendré par des sommes finies de commutateurs.
We prove that for many -algebras, the null space of all finite traces is spanned by finite sums of commutators.
@article{AIF_1982__32_1_129_0, author = {Fack, Thierry}, title = {Finite sums of commutators in $C^*$-algebras}, journal = {Annales de l'Institut Fourier}, pages = {129--137}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, number = {1}, year = {1982}, doi = {10.5802/aif.863}, zbl = {0464.46047}, mrnumber = {83g:46051}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.863/} }
TY - JOUR AU - Fack, Thierry TI - Finite sums of commutators in $C^*$-algebras JO - Annales de l'Institut Fourier PY - 1982 SP - 129 EP - 137 VL - 32 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.863/ DO - 10.5802/aif.863 LA - en ID - AIF_1982__32_1_129_0 ER -
Fack, Thierry. Finite sums of commutators in $C^*$-algebras. Annales de l'Institut Fourier, Tome 32 (1982) no. 1, pp. 129-137. doi : 10.5802/aif.863. https://aif.centre-mersenne.org/articles/10.5802/aif.863/
[1] The structure of multiplication and addition in simple C*-algebras, Math. Scand., 40 (1977). | MR | Zbl
,[2] A class of C*-algebras and topological Markov chains II : Reducible Markov chains and the Ext-functor for C*-algebras, Preprint Univ. Heidelberg, n° 57 (March 1980). | Zbl
,[3] A class of C*-algebras and topological Markov chains, Inventiones Math., 56 (1980), 251-268. | MR | Zbl
and ,[4] Equivalence and traces on C*-algebras, J. Functional Analysis, to appear. | Zbl
and ,[5] Dimensions and C*-algebras, Preprint UCLA (1980).
,[6] Sommes de commutateurs dans les algèbres de von Neumann finies continues, Ann. Inst. Fourier, Grenoble, 30,3 (1980), 49-73. | Numdam | MR | Zbl
et ,[7] C*-algebras and their Automorphism Groups, Academic Press, New-York (1979). | MR | Zbl
,[8] Ideals in a C*-algebra, Math. Scand., 27 (1970), 193-204. | MR | Zbl
and ,Cité par Sources :