Annales de l'institut Fourier

Thierry Fack
 Finite sums of commutators in C^{*}-algebras

Annales de l'institut Fourier, tome 32, ${ }^{\circ} 1$ (1982), p. 129-137
http://www.numdam.org/item?id=AIF_1982__32_1_129_0
© Annales de l'institut Fourier, 1982, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

FINITE SUMS OF COMMUTATORS IN C*-ALGEBRAS

by Thierry FACK

Introduction.

Let A be a C^{*}-algebra and put
$\mathrm{A}_{0}=\left\{x \in \mathrm{~A} \mid x=\sum_{n>1} x_{n} x_{n}^{*}-x_{n}^{*} x_{n} ;\right.$ norm convergence $\}$.
By [4] (theorem 2.6), A_{0} is exactly the null space of all finite traces on the self-adjoint part of A.

For von Neumann algebras, $\mathrm{A}_{\mathbf{0}}$ is spanned by finite sums of the above type (see for example [6]). This is not always true for C^{*} algebras, as it is shown by Pedersen and Petersen ([8], lemma 3.5) for a very natural algebra. A reasonable question is then : when can this happen for C^{*}-algebras?

The aim of this paper is to show that A_{0} is spanned by finite sums for stable algebras and C^{*}-algebras with "sufficiently many projections" like infinite simple C^{*}-algebras or simple A.F-algebras (with unit).

We use the usual terminology of C^{*}-algebras as in [7]. A commutator of the form $\left[x, x^{*}\right]=x x^{*}-x^{*} x$ is called a selfadjoint commutator.

I'd like to thank G. Skandalis for fruitful discussions and G.K. Pedersen who originally asked this question.

1. Stable C^{*}-algebras.

Recall that a C^{*}-algebra A is stable if $A \approx A \otimes \mathcal{K}$, where \mathscr{K} is the C^{*}-algebra of compact operators. We have

Theorem 1.1. - Let A be a stable C*-algebra. Then, every hermitian element of A is the sum of five self-adjoint commutators.

Every simple A.F-algebra A without non zero finite trace being stable, it follows that A_{0} is spanned by finite sums of selfadjoint commutators.

The proof of theorem 1.1 is based on the following lemmas.
Lemma 1.2. - Let A be a C^{*}-algebra and $x=x^{*} \in \mathrm{~A}$. Let p be a projection in $\mathrm{M}(\mathrm{A})$. Then, there exists $v \in \mathrm{~A}$ such that

$$
x=p x p+(1-p) x(1-p)+\left[v, v^{*}\right]
$$

Proof. - Put

$$
v=1 / 2|(1-p) x p|^{1 / 2}-|(1-p) x p|^{1 / 2} u^{*}+u|(1-p) x p|^{1 / 2}
$$

where u is the phase of $(1-p) x p$. As $p \in \mathrm{M}(\mathrm{A})$, we have $v \in \mathrm{~A}$. By direct calculation, we have $p x(1-p)+(1-p) x p=\left[v, v^{*}\right]$.

Lemma 1.3. - Let A be a C^{*}-algebra with unit and $x=x^{*} \in \mathrm{~A}$. Let $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a sequence of real numbers satisfying

$$
0 \leqslant \sum_{i=1}^{k} \lambda_{i} \leqslant 1 \quad(k=1, \ldots, n-1)
$$

and

$$
\sum_{i=1}^{n} \lambda_{i}=0
$$

Then, there exists $u \in \mathrm{M}_{n}(\mathrm{~A}),\|u\| \leqslant\|x\|^{1 / 2}$, such that

$$
\llbracket\left[\begin{array}{ccc}
\lambda_{1} x & & \circ \\
& \ddots & \\
\circ & \ddots & \lambda_{n} x
\end{array} \rrbracket=\left[u, u^{*}\right]\right.
$$

Proof. - Write $x=x_{+}-x_{-}$and put

$$
\mu_{k}^{+}=\left(\sum_{i=1}^{k} \lambda_{i}\right)^{1 / 2} x_{+}^{1 / 2}
$$

$$
\mu_{k}^{-}=\left(\sum_{i=1}^{k} \lambda_{i}\right)^{1 / 2} x_{-}^{1 / 2} \quad(k=1, \ldots, n-1)
$$

Take $u=\sum_{k=1}^{n-1}\left(\mu_{k}^{+} \otimes e_{k, k+1}+\mu_{k}^{-} \otimes e_{k+1, k}\right)$, where $\left(e_{i j}\right)_{1 \leqslant i, j \leqslant n}$ is the canonical system of matrix units. As $x_{+} x_{-}=0$, we get the result by direct calculation.

Let e be a rank one projection in $\check{\mathcal{K}}$.
Lemma 1.4. - Let A be a C^{*}-algebra and $x=x^{*} \in \mathrm{~A}$. Then, $x \otimes e$ is the sum of two self-adjoint commutators of $\mathrm{A} \otimes \mathcal{X}$.

$$
\text { Proof. - Write } x \otimes e=\llbracket\left[\begin{array}{ccc}
x & & \\
& \lambda_{1} x & \\
& \lambda_{2} x & \\
0 & & \ddots
\end{array}\right]-\llbracket\left[\begin{array}{lll}
0 & & 0 \\
& \lambda_{1} x & \\
& \lambda_{2} x & \\
0 & & \ddots
\end{array}\right]
$$

where $\left(\lambda_{n}\right)_{n \geqslant 1}$ is the sequence

$$
(-\frac{1}{2},-\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \underbrace{-\frac{1}{8}, \ldots,-\frac{1}{8}}_{8 \text { terms }}, \ldots) .
$$

The result follows from lemma 1.3.
Proof of theorem 1.1. - Let x be a hermitian element of $\mathrm{A} \otimes \mathscr{J}$. Take a projection $p \in M(\mathcal{J})$ with $p \sim 1-p \sim 1$.

By lemma 1.2 , there exists $v \in \mathrm{~A} \otimes \mathcal{K}$ such that

$$
x=p x p+(1-p) x(1-p)+\left[v, v^{*}\right]
$$

By lemma $1.4, p x p$ and $(1-p) x(1-p)$ are both sums of two self-adjoint commutators.

2. Infinite simple \mathbf{C}^{*}-algebras.

The main result of this section is the following
Theorem 2.1. - Let A be a C*-algebra with unit. Suppose that there exist two orthogonal projections e and f such that $e \sim f \sim 1$ in A . Then, each hermitian element of A is the sum of five self-adjoint commutators.

Recall that a simple C^{*}-algebra with unit is said to be infinite if it contains an element x such that $x^{*} x=1$ and $x x^{*} \neq 1$. From theorem 2.1, we deduce

Corollary 2.2.-Let A be an infinite simple C^{*}-algebra with unit. Then each hermitian element of A is the sum of five selfadjoint commutators.

Apply theorem 2.1 and proposition 2.2 of [1]. The proof of theorem 2.1 is based on the following lemma :

Lemma 2.3. - Let A, e and f be as in theorem 2.1. Let p be a rank one projection in \mathcal{K}. Then, there exists a homomorphism
$\varphi: \mathbf{A} \otimes \mathcal{K} \longrightarrow \mathbf{A}$ such that
$\varphi(x \otimes p)=x$ for each $x \in(1-f) \mathrm{A}(1-f)$.
Proof. - Let u, v be partial isometries such that

$$
u^{*} u=v^{*} v=1 \quad ; \quad u u^{*}=e, \quad v v^{*}=f .
$$

Put $w_{1}=1-f+v f$ and $w_{n}=v u^{n-1} v(n \geqslant 2)$.
The w_{n} are isometries with pairwise orthogonal ranges. Let $\left(e_{i j}\right)$ be a system of matrix units for \mathscr{K}, with $e_{11}=p$. Put then

$$
\varphi\left(z \otimes e_{i j}\right)=w_{i} z w_{j}^{*} \quad(z \in \mathrm{~A})
$$

Proof of the theorem 2.1. - Let $x=x^{*} \in \mathrm{~A}$. By lemma 1.2, there exists $y \in A$ such that $x=e x e+(1-e) x(1-e)+\left[y, y^{*}\right]$. By lemmas 2.3 and 1.4 , both exe and $(1-e) x(1-e)$ are sums of two self-adjoint commutators (note that exe $\in(1-f) \mathrm{A}(1-f)$). व

For non simple infinite C^{*}-algebras with unit, we may combine corollary 2.2 with the following obvious lemma:

Lemma 2.4. - Let $0 \longrightarrow \mathrm{~J} \longrightarrow \mathrm{~A} \longrightarrow \mathrm{~B} \longrightarrow 0$ be an exact sequence of C^{*}-algebras. Suppose that each hermitian element of J (resp. of B) is a sum of n (resp. k) self-adjoint commutators. Then, any hermitian element of A is the sum of $n+k$ self-adjoint commutators.

Example. - Let $\mathrm{A}=(\mathrm{A}(i, j))_{i, j \in \Sigma}$ be a transition matrix on a finite set Σ. Assume that A has no zero columns or rows. For $i, j \in \Sigma$, write $i \leqslant j$ if the transition from j to i is possible
(cf. [2]). We call i and j equivalent if $i \leqslant j \leqslant i$. Let F be the set of maximal states : $\mathrm{F}=\{i \in \Sigma \mid \forall j \in \Sigma i \leqslant j \Longrightarrow j \leqslant i\}$. F is an union of equivalence classes and every element of Σ is majorized by an element of F.

Assume that the restriction $\mathrm{A}_{\boldsymbol{\gamma}}$ of A to each equivalence classe γ of F is not a permutation matrix. Then Θ_{A} is defined in [2], [3] as the C^{*}-algebra generated by any system $\left(\mathrm{S}_{i}\right)_{i \in \Sigma}$ of non zero partial isometries with pairwise orthogonal ranges satisfying

$$
\mathrm{S}_{i}^{*} \mathrm{~S}_{i}=\sum_{j \in \Sigma} \mathrm{~A}(i, j) \mathrm{S}_{j} \mathrm{~S}_{j}^{*} \quad(i \in \Sigma)
$$

We claim that each hermitian element of Θ_{A} is the sum of ten selfadjoint commutators.

Put $A^{\prime}=A_{\Sigma-F}$ and $A^{\prime \prime}=A_{F}$.
As $\Theta_{A^{\prime \prime}}$ is a finite direct sum of Θ_{B} with B irreducible, each hermitian element of $\Theta_{A^{\prime \prime}}$ is the sum of five self-adjoint commutators by corollary 2.2 and theorem 2.14 of [3]. But it is easy to see that there exists an exact sequence

$$
0 \longrightarrow \Theta_{A^{\prime}} \otimes \mathcal{J} \longrightarrow \Theta_{\mathbf{A}} \longrightarrow \Theta_{A^{\prime \prime}} \longrightarrow 0
$$

and the result follows from lemma 2.4 and theorem 1.1.

3. Simple A.F-algebras.

In this section, we shall prove the following result :

Theorem 3.1. - Let A be a simple approximately finite dimensional C^{*}-algebra with unit. Then, each element of A_{0} is the sum of seven self-adjoint commu tators.

The proof is based on the following technical lemmas:

Lemma 3.2. - Let A be a C^{*}-algebra and $x=x^{*} \in \mathrm{~A}$. Let p, q, r be orthogonal projections in A with $p+q+r=1$. Then, there exists $u \in \mathrm{~A},\|u\| \leqslant 2 \sqrt{2}\|x\|^{1 / 2}$, such that

$$
x-p x p-q x q-r x r=\left[u, u^{*}\right]
$$

$$
\begin{aligned}
& \text { Proof. - Put } \\
u & =p-r-\frac{1}{2}(p x q-q x p)-\frac{1}{4}(p x r-r x p)-\frac{1}{2}(q x r-r x q)
\end{aligned}
$$

We have $x-p x p-q x q-r x r=\left[u, u^{*}\right]$ by direct calculation. Moreover, $\|x\| \leqslant 2$ implies $\|u\| \leqslant 4$. The lemma follows.

Lemma 3.3. - Let A be a C^{*}-algebra and $x=x^{*} \in \mathrm{~A}$. Let p, q, r be orthogonal projections in A with $p+q+r=1$ and $p \lesssim q \lesssim r$. Then, there exists $u \in \mathrm{~A},\|u\| \leqslant 3\|x\|^{1 / 2}$ and $y \in \mathrm{~A}$ such that

$$
\begin{aligned}
& x=\left[u, u^{*}\right]+y \\
& p y p=q y q=0 \\
& \|r y r\| \leqslant 3\|x\| .
\end{aligned}
$$

Proof. - Let v and w be partial isometries such that $v v^{*}=p$, $v^{*} v \leqslant q, w w^{*}=q, w^{*} w \leqslant r$. Put
$u=\sqrt{(p x p)_{+}} v+v^{*} \sqrt{(p x p)_{-}}+\sqrt{\left(q x q+v^{*} x v\right)_{+}} w$

$$
+w^{*}{\sqrt{\left(q x q+v^{*} x v\right)_{-}}}_{-}
$$

and $y=x-\left[u, u^{*}\right]$. We have $\|u\| \leqslant 3\|x\|^{1 / 2}, \quad p y p=q y q=0$ and $\|r y r\| \leqslant 3\|x\|$ by direct calculation.

Lemma 3.4. - Let A be a C^{*}-algebra and $x=x^{*} \in \mathrm{~A}$. Let p, q, r be orthogonal projections in A with $p+q+r=1$ and $p \lesssim q \lesssim r$. Then, there exist $u, v \in \mathrm{~A} ; \quad\|u\| \leqslant 3\|x\|^{1 / 2}$, $\|v\| \leqslant 13\|x\|^{1 / 2} \quad$ such that $\quad x-\left[u, u^{*}\right]-\left[v, v^{*}\right] \in r \mathrm{~A} r$ and $\left\|x-\left[u, u^{*}\right]-\left[v, v^{*}\right]\right\| \leqslant 3\|x\|$.

Proof. - By lemma 3.3, we have $x=\left[u, u^{*}\right]+y$ with $\|u\| \leqslant 3\|x\|^{1 / 2}, \quad p y p=q y q=0 \quad$ and $\quad\|r y r\| \leqslant 3\|x\|$. We deduce $\|y\| \leqslant 19\|x\|$, and the result follows from lemma 3.2.

Lemma 3.5. - Let B be a finite dimensional C^{*}-algebra and $x \in \mathrm{~B}_{0}$. Then, there exists $u \in \mathrm{~B},\|u\| \leqslant \sqrt{2}\|x\|^{1 / 2}$, such that $x=\left[u, u^{*}\right]$.

Proof. - Using the decomposition of B into simple components, we can assume that $B=M_{n}(C)$. One may also suppose x is diagonal. The proper values of x are real numbers $\lambda_{1}, \ldots, \lambda_{n}$
with $\sum_{i=1}^{n} \lambda_{i}=0$. As there exists a permutation τ of $\{1, \ldots, n\}$ such that $0 \leqslant \sum_{i=1}^{k} \lambda_{\tau(i)} \leqslant 2 \sup _{1 \leqslant i \leqslant n}\left|\lambda_{i}\right|$ for $k=1, \ldots, n$, we can assume that $x=\sum_{i=1}^{n} \lambda_{i} e_{i i}$ and $0 \leqslant \sum_{i=1}^{k} \lambda_{i} \leqslant 2\|x\|$ $(k=1, \ldots, n)$, where $\left(e_{i j}\right)_{1 \leqslant i, j \leqslant n}$ is some system of matrix units. Apply then lemma 1.3.

Lemma 3.6. - Let A be a simple A. F-algebra with unit. Suppose that A is non isomorphic to $\mathrm{M}_{n}(\mathrm{C})$. Then, there exist sequences $\left(p_{n}\right)_{n>1},\left(q_{n}\right)_{n>1}$ and $\left(r_{n}\right)_{n>1}$ of projections such that
i) $p_{1}+q_{1}+r_{1}=1$
ii) $p_{n} \leqslant q_{n} \leqslant r_{n} \quad(n \geqslant 1)$
iii) the r_{n} are mutually orthogonal,
iv) $r_{n-1}=p_{n}+q_{n} \quad(n \geqslant 2)$.

Proof. - It suffices to show that there exists, for each projection $p \neq 0$, an element $q \in \mathrm{~K}_{0}(\mathrm{~A})_{+}$such that $2 q \leqslant p \leqslant 3 q$. Passing to $p \mathrm{~A} p$, we may assume that $p=1$. By [5] (lemma A.4.3), $\mathrm{K}_{0}(\mathrm{~A})$ is the limit of a system $\mathrm{Z}^{r(1)} \xrightarrow{\varphi_{1}} \mathrm{Z}^{r(2)} \xrightarrow{\varphi_{2}} \cdots$ having the following properties :
i) the φ_{n} are strictly positive, i.e. $\varphi_{n}=\left(\alpha_{i j}^{n}\right)$ with $\alpha_{i j}^{n}>0$,
ii) there exist order units $u_{n} \in Z^{r(n)}$ such that

$$
u_{1} \longrightarrow u_{2} \longrightarrow \cdots \longrightarrow 1
$$

One then may choose $q \in \mathrm{~K}_{0}(\mathrm{~A})_{+}$such that $2 q \leqslant 1 \leqslant 3 q$.
Proof of theorem 3.1. - The case $A=M_{n}(C)$ is trivial, so that we can assume $\mathrm{A} \not \neq \mathrm{M}_{n}(\mathrm{C})$. Let x be in A_{0}. Let $\left(p_{n}\right)_{n \geqslant 1}$, $\left(q_{n}\right)_{n>1}$ and $\left(r_{n}\right)_{n>1}$ be sequences of projections as in lemma 3.6.

Apply first lemma 3.4 to get $x_{1} \in r_{1} \mathrm{~A} r_{1},\left\|x_{1}\right\| \leqslant 3\|x\|$, and $u, v \in \mathrm{~A}$ such that $x=\left[u, u^{*}\right]+\left[v, v^{*}\right]+x_{1}$. As r_{1} is an order unit in $K_{0}(A)_{+}$, any finite trace on $r_{1} A r_{1}$ extends uniquely to a finite trace on A, so that $x_{1} \in\left(r_{1} A r_{1}\right)_{0}$.

Starting from x_{1}, we are going to construct sequences $\left(x_{n}\right)_{n>1}$, $\left(u_{n}\right)_{n>1},\left(v_{n}\right)_{n \geqslant 1}$ and $\left(w_{n}\right)_{n \geqslant 1}$ satisfying

人) $x_{n}=\left[u_{n}, u_{n}^{*}\right]+\left[v_{n}, v_{n}^{*}\right]+\left[w_{n}, w_{n}^{*}\right]+x_{n+1}$,
乃) $u_{n} \in r_{n} \mathrm{~A} r_{n} ; \quad v_{n}, w_{n} \in\left(r_{n}+r_{n+1}\right) \mathrm{A}\left(r_{n}+r_{n+1}\right)$,
r) $x_{n} \in\left(r_{n} \mathrm{~A} r_{n}\right)_{0}$,

ס) $\left\|x_{n}\right\| \leqslant \frac{3\|x\|}{n}$
$\epsilon)\left\|u_{n}\right\| \leqslant 2\left\|x_{n}\right\|^{1 / 2} \quad$ and $\quad v_{n}, w_{n} \longrightarrow 0 \quad(n \longrightarrow \infty)$.
Suppose $\left(x_{1}, \ldots, x_{n-1}, x_{n}\right),\left(u_{1}, \ldots, u_{n-1}\right),\left(v_{1}, \ldots, v_{n-1}\right)$ and $\left(w_{1}, \ldots, w_{n-1}\right)$ constructed.

Put $\quad \alpha=\frac{\|x\|}{n+1} \cdot$ As $x_{n} \in\left(r_{n} A r_{n}\right)_{0}$, we have

$$
x_{n}=\sum_{p \geqslant 1}\left[c_{p}, c_{p}^{*}\right]
$$

where $c_{p} \in r_{n} \mathrm{~A} r_{n}$ and the sum being norm convergent. By approximation,we can find a finite dimensional subalgebra B of $r_{n} \mathrm{~A} r_{n}$ and $y \in \mathrm{~B}_{0}$ such that $\|y\| \leqslant 2\left\|x_{n}\right\|$ and $\left\|x_{n}-y\right\| \leqslant \alpha$.

By lemma 3.5, there exists $u_{n} \in r_{n} \mathrm{~A} r_{n}$,

$$
\left\|u_{n}\right\| \leqslant \sqrt{2}\|y\|^{1 / 2} \leqslant 2\left\|x_{n}\right\|^{1 / 2}
$$

such that $\quad x_{n}=\left[u_{n}, u_{n}^{*}\right]+z, \quad$ where $z=x_{n}-y$.
Note that $\quad z \in\left(\left(r_{n}+r_{n+1}\right) \mathrm{A}\left(r_{n}+r_{n+1}\right)\right)_{0}$.
By lemma 3.4, there exist $v_{n}, w_{n} \in\left(r_{n}+r_{n+1}\right) \mathrm{A}\left(r_{n}+r_{n+1}\right)$ such that $z=\left[v_{n}, v_{n}^{*}\right]+\left[w_{n}, w_{n}^{*}\right]+x_{n+1}$ where $x_{n+1} \in r_{n+1} \mathrm{~A} r_{n+1}$ and

$$
\begin{aligned}
& \left\|v_{n}\right\| \leqslant 3\|z\|^{1 / 2} \leqslant 3 \alpha^{1 / 2} \\
& \left\|w_{n}\right\| \leqslant 13\|z\|^{1 / 2} \leqslant 13 \alpha^{1 / 2}
\end{aligned}
$$

We have

$$
x_{n}=\left[u_{n}, u_{n}^{*}\right]+\left[v_{n}, v_{n}^{*}\right]+\left[w_{n}, w_{n}^{*}\right]+x_{n+1}
$$

and hence $x_{n+1} \in\left(r_{n+1} \mathrm{~A} r_{n+1}\right)_{0}$. Moreover,

$$
\left\|x_{n+1}\right\| \leqslant 3\|z\| \leqslant 3 \alpha \leqslant \frac{3\|x\|}{n+1}
$$

By induction, the existence of four sequences satisfying $\alpha), \beta$), γ), δ) and ϵ) is then proved.

Put

$$
\mathrm{U}=\sum_{n>1} u_{n}
$$

$$
\begin{array}{ll}
\mathrm{V}_{e v}=\sum_{n \geqslant 1} v_{2 n} ; \quad \mathrm{V}_{o d}=\sum_{n \geqslant 0} v_{2 n+1}, \\
\mathrm{~W}_{e v}=\sum_{n \geqslant 1} w_{2 n} ; \quad \mathrm{W}_{o d}=\sum_{n \geqslant 0} w_{2 n+1} .
\end{array}
$$

These sums make sense because they involve elements with disjoint support and norm converging to zero. Moreover, we have

$$
\begin{aligned}
x=\left[u, u^{*}\right]+\left[v, v^{*}\right]+\left[\mathrm{U}, \mathrm{U}^{*}\right]+\left[\mathrm{V}_{e v}\right. & \left., \mathrm{V}_{e v}^{*}\right]+\left[\mathrm{V}_{o d}, \mathrm{~V}_{o d}^{*}\right] \\
& +\left[\mathrm{W}_{e v}, \mathrm{~W}_{e v}^{*}\right]+\left[\mathrm{W}_{o d}, \mathrm{~W}_{o d}^{*}\right]
\end{aligned}
$$

The proof of theorem 3.1 is complete.

BIBLIOGRAPHY

[1] J. CunTz, The structure of multiplication and addition in simple C*-algebras, Math. Scand., 40 (1977).
[2] J. Cuntz, A class of C^{*}-algebras and topological Markov chains II : Reducible Markov chains and the Ext-functor for C^{*}-algebras, Preprint Univ. Heidelberg, $\mathrm{n}^{\circ} 57$ (March 1980).
[3] J. Cuntz and W. Krieger, A class of C^{*}-algebras and topological Markov chains, Inventiones Math., 56 (1980), 251-268.
[4] J. Cuntz and G.K. Pedersen, Equivalence and traces on C*algebras, J. Functional Analysis, to appear.
[5] E.G. Effros, Dimensions and C'-algebras, Preprint UCLA (1980).
[6] T. Fack et P. De La Harpe, Sommes de commutateurs dans les algèbres de von Neumann finies continues, Ann. Inst. Fourier, Grenoble, 30,3 (1980), 49-73.
[7] G.K. Pedersen, C^{*}-algebras and their Automorphism Groups, Academic Press, New-York (1979).
[8] G.K. Pedersen and N.H. Petersen, Ideals in a C*-algebra, Math. Scand., 27 (1970), 193-204.

Manuscrit reçu le 25 mars 1981.
Thierry Fack,
Laboratoire de Mathématiques Fondamentales
Université Pierre et Marie Curie
4, Place Jussieu
Tour 45-46, $3^{\text {ème }}$ étage
75230 Paris Cedex 05.

