We study the class of singular measures whose Fourier partial sums converge to 0 in the metric of the weak space; symmetric sets of constant ratio occur in an unexpected way.
On construit des mesures singulières dont les sommes partielles de Fourier convergent vers zéro dans la métrique de -faible; on fait une analyse raffinée sur les ensembles symétriques de rapport constant.
@article{AIF_1982__32_1_119_0, author = {Kaufman, Robert}, title = {On the weak $L^1$ space and singular measures}, journal = {Annales de l'Institut Fourier}, pages = {119--128}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, number = {1}, year = {1982}, doi = {10.5802/aif.862}, zbl = {0464.42005}, mrnumber = {84i:43006}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.862/} }
TY - JOUR AU - Kaufman, Robert TI - On the weak $L^1$ space and singular measures JO - Annales de l'Institut Fourier PY - 1982 SP - 119 EP - 128 VL - 32 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.862/ DO - 10.5802/aif.862 LA - en ID - AIF_1982__32_1_119_0 ER -
Kaufman, Robert. On the weak $L^1$ space and singular measures. Annales de l'Institut Fourier, Volume 32 (1982) no. 1, pp. 119-128. doi : 10.5802/aif.862. https://aif.centre-mersenne.org/articles/10.5802/aif.862/