The class of convolution operators on the Marcinkiewicz spaces
Annales de l'Institut Fourier, Volume 31 (1981) no. 3, pp. 225-243.

Let 𝒯 X denote the operator-norm closure of the class of convolution operators Φ μ :XX where X is a suitable function space on R. Let r p be the closed subspace of regular functions in the Marinkiewicz space p , 1p<. We show that the space 𝒯 r p is isometrically isomorphic to 𝒯 L p and that strong operator sequential convergence and norm convergence in 𝒯 r p coincide. We also obtain some results concerning convolution operators under the Wiener transformation. These are to improve a Tauberian theorem of Wiener on 2 .

On considère la classe des opérateurs de convolution Φ μ :XXX est un espace convenable de fonctions sur R. Soit 𝒯 X la fermeture de cette classe dans la norme des opérateurs. Soit r p le sous-espace des fonctions régulières dans l’espace de Marcinkiewicz p , 1p<. Nous montrons que l’espace 𝒯 r p est isométriquement isomorphe à 𝒯 L p et que la convergence d’une suite d’opérateurs dans la topologie forte des opérateurs est équivalente à la convergence en norme. Nous obtenons aussi quelques résultats sur l’action de la transformation de Wiener sur les opérateurs de convolution, et comme application, nous trouvons une extension d’un théorème taubérien de Wiener.

     author = {Lau, Ka-Sing},
     title = {The class of convolution operators on the {Marcinkiewicz} spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {225--243},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     number = {3},
     year = {1981},
     doi = {10.5802/aif.845},
     zbl = {0449.46033},
     mrnumber = {83i:42009},
     language = {en},
     url = {}
AU  - Lau, Ka-Sing
TI  - The class of convolution operators on the Marcinkiewicz spaces
JO  - Annales de l'Institut Fourier
PY  - 1981
SP  - 225
EP  - 243
VL  - 31
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  -
DO  - 10.5802/aif.845
LA  - en
ID  - AIF_1981__31_3_225_0
ER  - 
%0 Journal Article
%A Lau, Ka-Sing
%T The class of convolution operators on the Marcinkiewicz spaces
%J Annales de l'Institut Fourier
%D 1981
%P 225-243
%V 31
%N 3
%I Institut Fourier
%C Grenoble
%R 10.5802/aif.845
%G en
%F AIF_1981__31_3_225_0
Lau, Ka-Sing. The class of convolution operators on the Marcinkiewicz spaces. Annales de l'Institut Fourier, Volume 31 (1981) no. 3, pp. 225-243. doi : 10.5802/aif.845.

[1] K. Anzai, S. Koizumi and K. Matsuoka, On the Wiener formula of functions of two variables, Tokyo J. Math., (to appear). | Zbl

[2] J.P. Bertrandias, Espaces de fonctions bornées et continues en moyenne asymptotique d'ordre p, Bull. Soc. Math. France, (1966), Mémoire 5. | Numdam | MR | Zbl

[3] J.P. Bertrandias, Opérateurs subordinatifs sur des espaces de fonctions bornées en moyenne quadratique, J. Math. Pures et Appl., 52 (1973), 27-63. | MR | Zbl

[4] H. Bohr and E. Følner, On some types of functional spaces, Acta Math., 76 (1944), 31-155. | Zbl

[5] G. Hardy and J. Littlewood, Some properties of fractional integrals, Math. Zeit., 27 (1928), 564-606. | JFM | Zbl

[6] E. Hewitt and R. Ross, Abstract Harmonic Analysis II, Springer Verlag, Berlin, 1970. | Zbl

[7] K. Lau, On the Banach spaces of functions with bounded upper means, Pacific J. Math., (1980), to appear. | MR | Zbl

[8] K. Lau and J. Lee. On generalized harmonic analysis, Trans. Amer. Math. Soc., 259 (1980), 75-97. | MR | Zbl

[9] R. Larsen, An introduction to the theory of multipliers, Springer Verlag, Berlin, (1971). | MR | Zbl

[10] P. Masani, Commentary on the memoire on generalized harmonic analysis [30a], Norbert Wiener : Collected Works, MIT Press, (1979), 333-379.

[11] R. Nelson, The spaces of functions of finite upper p-variation, Trans. Amer. Math. Soc., 253 (1979), 171-190. | MR | Zbl

[12] R. Nelson, Pointwise evaluation of Bochner integrals in Marcinkiewicz space, (to appear). | Zbl

[13] N. Wiener, Generalized harmonic analysis, Acta Math., 55 (1930), 117-258. | JFM

[14] N. Wiener, Tauberian theorems Ann. of Math., 33 (1932), 1-100. | JFM | Zbl

[15] N. Wiener, The Fourier integral and certain of its applications, Dover, New York, 1959. | MR | Zbl

Cited by Sources: