In this article we extend results obtained by J. Chazarain about the spectrum of Schrödinger operators: when approach 0. We obtain the same results for globally elliptic pseudodifferential operators of order .
Dans cet article nous généralisons les résultats obtenus par J. Chazarain sur le spectre d’opérateurs de Schrödinger lorsque . Nous étendons ses résultats aux opérateurs pseudo-différentiels globalement elliptiques d’ordre .
@article{AIF_1981__31_3_169_0, author = {Robert, Didier and Helffer, Bernard}, title = {Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques}, journal = {Annales de l'Institut Fourier}, pages = {169--223}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, number = {3}, year = {1981}, doi = {10.5802/aif.844}, zbl = {0451.35022}, mrnumber = {83b:58072}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.844/} }
TY - JOUR AU - Robert, Didier AU - Helffer, Bernard TI - Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques JO - Annales de l'Institut Fourier PY - 1981 SP - 169 EP - 223 VL - 31 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.844/ DO - 10.5802/aif.844 LA - fr ID - AIF_1981__31_3_169_0 ER -
%0 Journal Article %A Robert, Didier %A Helffer, Bernard %T Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques %J Annales de l'Institut Fourier %D 1981 %P 169-223 %V 31 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.844/ %R 10.5802/aif.844 %G fr %F AIF_1981__31_3_169_0
Robert, Didier; Helffer, Bernard. Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques. Annales de l'Institut Fourier, Volume 31 (1981) no. 3, pp. 169-223. doi : 10.5802/aif.844. https://aif.centre-mersenne.org/articles/10.5802/aif.844/
[1] On some oscillatory integral transformation in L2(Rn), Japan J. Math., 4 (1978), 299-361. | MR | Zbl
and ,[2] A general calculus of pseudodifferential operators, Duke Math. J., 42 (1975), 1-42. | MR | Zbl
,[3] Semi-classical approximations in wave mechanics, Rep. Prog. Phys., 35 (1972), 315-397.
and ,[4] Spectre d'un hamiltonien quantique et mécanique classique, Comm. in Partial diff. Equat., n° 6 (1980), 595-644. | MR | Zbl
,[5] Spectre joint d'opérateurs pseudodifférentiels qui commutent. I - Le cas non intégrable, Duke Math. J., 46 (1979), 169-182. | MR | Zbl
,[6] Oscillatory integrals..., Comm. Pure Appl. Math., 27 (1974), 207-281. | Zbl
,[7] Spectrum of elliptic operators and periodic geodesics, Inv. Math., 29 (1975), 39-79. | MR | Zbl
and ,[8] Semi-classical approximations of nuclear hamiltonians, I - Spin-independant potentials, Annals of physics, 123 (1979), 359-380.
and ,[9] Some problems in integral geometry and some related problems in microlocal analysis, Amer. J. Math., 101 (1979), 915-955. | MR | Zbl
and ,[10] The spectral function of an elliptic operator, Acta Math., 121 (1968), 193-218. | MR | Zbl
,[11] The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math., 32 (1979), 359-443. | MR | Zbl
,[12] On the asymptotic distribution of eigenvalues of pseudodifferential operators in Rn, Arkiv för Math., 17 n° 2 (1979), 296-313. | MR | Zbl
,[13] Analyse lagrangienne et mécanique quantique, Collège de France (1976-1977). | EuDML
,[14] Théorie des perturbations et méthodes asymptotiques, Dunod, Paris (1972), traduction. | Zbl
,[15] Mécanique quantique t. 1, Dunod, Paris (1962).
,[16] Propriétés spectrales d'opérateurs pseudodifferentiels, Comm. in Partial diff. Equat., 3 (1978), 755-826. | MR | Zbl
,[17] Pseudodifferential operators and spectral theory, Nauka Moskva, 1978. | Zbl
,[18] On the asymptotic distribution of eigen values of pseudodifferential operators in Rn, Math. USSR Sbornik, 21 (1973), 565-583. | MR | Zbl
and ,[19] An algebra of pseudodifferential operators and the asymptotics of quantum mechanics, J. of Funct. Analysis, 29 n° 1 (1978), 104-132. | MR | Zbl
,Cited by Sources: