We construct, in a geometric way, a class of symbols which are classical except along some submanifold. The parametrics of and , for instance, belong to the associated class of pseudodifferential operators.
On construit par voie géométrique une classe de symboles classiques en dehors d’une sous-variété. La classe d’opérateurs pseudodifférentiels associée contient les paramétrix d’opérateurs tels que ou
@article{AIF_1980__30_3_199_0, author = {Hirschowitz, Andr\'e}, title = {Une classe de symboles new-look}, journal = {Annales de l'Institut Fourier}, pages = {199--217}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {30}, number = {3}, year = {1980}, doi = {10.5802/aif.798}, zbl = {0421.35081}, mrnumber = {81m:58076}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.798/} }
TY - JOUR AU - Hirschowitz, André TI - Une classe de symboles new-look JO - Annales de l'Institut Fourier PY - 1980 SP - 199 EP - 217 VL - 30 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.798/ DO - 10.5802/aif.798 LA - fr ID - AIF_1980__30_3_199_0 ER -
Hirschowitz, André. Une classe de symboles new-look. Annales de l'Institut Fourier, Volume 30 (1980) no. 3, pp. 199-217. doi : 10.5802/aif.798. https://aif.centre-mersenne.org/articles/10.5802/aif.798/
[1] Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure and Appl. Math., XXVII (1974), 585-639. | MR | Zbl
,[2] Fourier Integral Operators, Courant Institute of Math. Sciences, New York University, 1973. | MR | Zbl
,[3] Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities, Comm. Pure and Appl. Math., XXVII (1974), 207-281. | MR | Zbl
,[4] Fourier Integral Operators II, Acta Math., 128 (1972), 183-265. | MR | Zbl
, ,[5] Singular Symbols, Preprint, 1975.
,[6] Invariants associés à une classe d'opd et applications à l'hypoellipticité, Ann. Inst. Fourier, XXVI Fasc. 2 (1976), 55-70. | Numdam | MR | Zbl
,[7] Hypoelliptic differential operators, Ann. Inst. Fourier, XI (1961), 477-492. | Numdam | MR | Zbl
,[8] Fourier Integral Operators I, Acta Math., 127 (1971), 79-183. | MR | Zbl
,Cited by Sources: