The fundamental semigroup of the heat equation for the real line has an analytic extension to the right-hand open half plane which satisfies for Re. Using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane we show that the Wiener tauberian theorem for follows from the above inequality.
Le semi-groupe fondamental de l’équation de la chaleur pour la droite réelle possède une extension analytique au demi-plan droit qui vérifie pour Re. En utilisant le théorème de Ahlfors-Heins pour les fonctions analytiques bornées sur le demi-plan on peut déduire le théorème taubérien de Wiener de l’inégalité ci-dessus.
@article{AIF_1980__30_2_91_0, author = {Esterl\'e, Jean}, title = {A complex-variable proof of the {Wiener} tauberian theorem}, journal = {Annales de l'Institut Fourier}, pages = {91--96}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {30}, number = {2}, year = {1980}, doi = {10.5802/aif.786}, zbl = {0419.40005}, mrnumber = {81j:43016}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.786/} }
TY - JOUR AU - Esterlé, Jean TI - A complex-variable proof of the Wiener tauberian theorem JO - Annales de l'Institut Fourier PY - 1980 SP - 91 EP - 96 VL - 30 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.786/ DO - 10.5802/aif.786 LA - en ID - AIF_1980__30_2_91_0 ER -
Esterlé, Jean. A complex-variable proof of the Wiener tauberian theorem. Annales de l'Institut Fourier, Volume 30 (1980) no. 2, pp. 91-96. doi : 10.5802/aif.786. https://aif.centre-mersenne.org/articles/10.5802/aif.786/
[1] Entire functions, Academic press, New-York, 1954. | MR | Zbl
,[2] L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. de France, 92 (1964), 181-236. | Numdam | MR | Zbl
,[3] On group algebras of nilpotent groups, Studia Math., 47 (1973), 37-49. | MR | Zbl
,[4] Ideal theory in group algebras of locally compact groups, Inventiones Math., 31 (1976), 259-278. | MR | Zbl
,[5] Factorization, bounded approximate identities and a convolution algebra, J. Func. An. | Zbl
,Cited by Sources: