The norm of a trigonometric polynomial with non zero coefficients of absolute value not less than 1 exceeds a fixed positive multiple of
La norme d’un polynôme trigonométrique , dépasse
@article{AIF_1980__30_2_79_0, author = {Pichorides, S. K.}, title = {On the $L^1$ norm of exponential sums}, journal = {Annales de l'Institut Fourier}, pages = {79--89}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {30}, number = {2}, year = {1980}, doi = {10.5802/aif.785}, zbl = {0432.42001}, mrnumber = {81j:10058}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.785/} }
TY - JOUR AU - Pichorides, S. K. TI - On the $L^1$ norm of exponential sums JO - Annales de l'Institut Fourier PY - 1980 SP - 79 EP - 89 VL - 30 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.785/ DO - 10.5802/aif.785 LA - en ID - AIF_1980__30_2_79_0 ER -
Pichorides, S. K. On the $L^1$ norm of exponential sums. Annales de l'Institut Fourier, Volume 30 (1980) no. 2, pp. 79-89. doi : 10.5802/aif.785. https://aif.centre-mersenne.org/articles/10.5802/aif.785/
[1] On a theorem of Paley and the Littlewood conjecture, To appear in Arkiv för Matematik.
,[2] On a conjecture of Littlewood concerning exponential sums (I), Bull. Greek Math. Soc., Vol. 18 (1977), 8-16. | MR | Zbl
,[3] On a conjecture of Littlewood concerning exponential suns (II), Bull. Greek Math. Soc., Vol. 19 (1978), 274-277. | MR | Zbl
,[4] Trigonometric Series. Vol. I, II. Cambridge University Press, 1968. October 1979.
,Cited by Sources: