The fundamental semigroup of the heat equation for the real line has an analytic extension to the right-hand open half plane which satisfies for Re. Using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane we show that the Wiener tauberian theorem for follows from the above inequality.
Le semi-groupe fondamental de l’équation de la chaleur pour la droite réelle possède une extension analytique au demi-plan droit qui vérifie pour Re. En utilisant le théorème de Ahlfors-Heins pour les fonctions analytiques bornées sur le demi-plan on peut déduire le théorème taubérien de Wiener de l’inégalité ci-dessus.
@article{AIF_1980__30_2_91_0,
author = {Esterl\'e, Jean},
title = {A complex-variable proof of the {Wiener} tauberian theorem},
journal = {Annales de l'Institut Fourier},
pages = {91--96},
year = {1980},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {30},
number = {2},
doi = {10.5802/aif.786},
zbl = {0419.40005},
mrnumber = {81j:43016},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.786/}
}
TY - JOUR AU - Esterlé, Jean TI - A complex-variable proof of the Wiener tauberian theorem JO - Annales de l'Institut Fourier PY - 1980 SP - 91 EP - 96 VL - 30 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.786/ DO - 10.5802/aif.786 LA - en ID - AIF_1980__30_2_91_0 ER -
Esterlé, Jean. A complex-variable proof of the Wiener tauberian theorem. Annales de l'Institut Fourier, Tome 30 (1980) no. 2, pp. 91-96. doi: 10.5802/aif.786
[1] , Entire functions, Academic press, New-York, 1954. | Zbl | MR
[2] , L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. de France, 92 (1964), 181-236. | Zbl | MR | Numdam
[3] , On group algebras of nilpotent groups, Studia Math., 47 (1973), 37-49. | Zbl | MR
[4] , Ideal theory in group algebras of locally compact groups, Inventiones Math., 31 (1976), 259-278. | Zbl | MR
[5] , Factorization, bounded approximate identities and a convolution algebra, J. Func. An. | Zbl
Cité par Sources :



