# ANNALES DE L'INSTITUT FOURIER

Some remarks on convolution equations
Annales de l'Institut Fourier, Volume 23 (1973) no. 1, pp. 55-73.

Using a description of the topology of the spaces ${\mathbf{E}}^{\prime }\left(\Omega \right)$ ($\Omega$ open convex subset of ${R}^{n}$) via the Fourier transform, namely their analytically uniform structures, we arrive at a formula describing the convex hull of the singular support of a distribution $T$, $T\in {\mathbf{E}}^{\prime }$. We give applications to a class of distributions $T$ satisfying

 $\text{cv.}\phantom{\rule{4pt}{0ex}}\text{sing.}\phantom{\rule{4pt}{0ex}}\text{supp.}\phantom{\rule{0.166667em}{0ex}}S*T=\phantom{\rule{0.166667em}{0ex}}\text{cv.}\phantom{\rule{4pt}{0ex}}\text{sing.}\phantom{\rule{4pt}{0ex}}\text{supp.}\phantom{\rule{0.166667em}{0ex}}S+\phantom{\rule{0.166667em}{0ex}}\text{cv.}\phantom{\rule{4pt}{0ex}}\text{sing.}\phantom{\rule{4pt}{0ex}}\text{supp.}\phantom{\rule{0.166667em}{0ex}}T$

for all $S\in {\mathbf{E}}^{\prime }$.

Par voie d’une description de la topologie des espaces ${\mathbf{E}}^{\prime }\left(\Omega \right)$ ($\Omega$ ouvert convexe dans ${R}^{n}$) via la transformation de Fourier, c’est-à-dire leurs structures analytiques uniformes, on arrive à une formule qui décrit l’enveloppe convexe du support singulier d’une distribution $T$, $T\in {\mathbf{E}}^{\prime }$. On donne des applications à une classe des distributions qui satisfont à l’égalité

 $\text{cv.}\phantom{\rule{4pt}{0ex}}\text{sing.}\phantom{\rule{4pt}{0ex}}\text{supp.}\phantom{\rule{0.166667em}{0ex}}S*T=\phantom{\rule{0.166667em}{0ex}}\text{cv.}\phantom{\rule{4pt}{0ex}}\text{sing.}\phantom{\rule{4pt}{0ex}}\text{supp.}\phantom{\rule{0.166667em}{0ex}}S+\phantom{\rule{0.166667em}{0ex}}\text{cv.}\phantom{\rule{4pt}{0ex}}\text{sing.}\phantom{\rule{4pt}{0ex}}\text{supp.}\phantom{\rule{0.166667em}{0ex}}T$

pour toutes $S\in {\mathbf{E}}^{\prime }$.

@article{AIF_1973__23_1_55_0,
author = {Berenstein, C. A. and Dostal, M. A.},
title = {Some remarks on convolution equations},
journal = {Annales de l'Institut Fourier},
pages = {55--73},
publisher = {Institut Fourier},
volume = {23},
number = {1},
year = {1973},
doi = {10.5802/aif.444},
zbl = {0241.46039},
mrnumber = {49 #5822},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.444/}
}
TY  - JOUR
AU  - Berenstein, C. A.
AU  - Dostal, M. A.
TI  - Some remarks on convolution equations
JO  - Annales de l'Institut Fourier
PY  - 1973
SP  - 55
EP  - 73
VL  - 23
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.444/
DO  - 10.5802/aif.444
LA  - en
ID  - AIF_1973__23_1_55_0
ER  - 
%0 Journal Article
%A Berenstein, C. A.
%A Dostal, M. A.
%T Some remarks on convolution equations
%J Annales de l'Institut Fourier
%D 1973
%P 55-73
%V 23
%N 1
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.444/
%R 10.5802/aif.444
%G en
%F AIF_1973__23_1_55_0
Berenstein, C. A.; Dostal, M. A. Some remarks on convolution equations. Annales de l'Institut Fourier, Volume 23 (1973) no. 1, pp. 55-73. doi : 10.5802/aif.444. https://aif.centre-mersenne.org/articles/10.5802/aif.444/

[1] A.D. Aleksandrov, “Die innere Geometrie der konvexen Flächen”, Berlin, 1955. | Zbl

[2] I.Ja. Bakel'Man, “Geometric methods of solutions of elliptic equations” (in Russian), Moscow, 1964.

[3] C.A. Berenstein and M.A. Dostal, Topological properties of the analytically uniform spaces, Trans. Amer. Math. Soc., 154 (1971), 493-513. | MR | Zbl

[4] C.A. Berenstein and M.A. Dostal, Fourier transforms of the Beurling classes Dw, E'w', Bull. Amer. Math. Soc., 77 (1971), 963-967. | MR | Zbl

[5] C.A. Berenstein and M.A. Dostal, “Analytically uniform spaces and their applications to convolution equations”, Lecture Notes in Math., vol. 256, Springer-Verlag, 1972. | MR | Zbl

[6] N. Bourbaki, “Espaces vectoriels topologiques”, Eléments de mathématique, Livre V, Hermann et Cie, Paris, 1953, 1955.

[7] M.A. Dostal, On Fourier image of the singular support of a distribution, Czech. Math. J., 16 (1966), 231-237. | MR | Zbl

[8] M.A. Dostal, An analogue of a theorem of Vladimir Bernstein and its applications to singular supports of distributions, Proc. London Math. Soc., 19 (1969), p. 553-576. | MR | Zbl

[9] M.A. Dostal, A complex characterization of the Schwartz space D ($ATT$), Math. Ann., 195 (1972), p. 175-191. | MR | Zbl

[10] L. Ehrenpreis, Solutions of some problems of division I, Amer. J. Math. 76 (1954), 883-893. | MR | Zbl

[11] L. Ehrenpreis, Solutions of some problems of division II, Amer. J. Math., 77 (1955), 286-292. | MR | Zbl

[12] L. Hörmander, On the range of convolution operators, Ann. Math., 76 (1962), 148-170. | MR | Zbl

[13] L. Hörmander, Supports and singular supports of convolutions, Acta Math., 110 (1965), 279-302. | MR | Zbl

[14] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, 6 (1955-1956), 271-355. | Numdam | MR | Zbl

[15] B. Malgrange, Sur la propagation de la régularité des solutions des équations à coefficients constants, Bull. Math. Soc. Sci. Math. Phys. R.P. Roumaine, 3 (1959), 432-440. | Zbl

[16] K. Reidemeister, Uber die singulären Randpunkte eines konvexen Körpers, Math. Ann., 83 (1921), 116-118. | JFM

[17] W. Rudin, “Function theory in polydisks”, W.A. Benjamin, Inc., New York, 1969. | Zbl

[18] L. Schwartz, “Théorie des distributions”, I, II, Hermann et Cie, Paris, 1950, 1953. | Zbl

Cited by Sources: