The note discusses a probabilistic method for constructing “small” sets, with regard to differentiable transformations and to quantitative measures of independence.
On construit des ensembles aléatoires de multiplicité rationnellement indépendants, précisant ces propriétés sous deux aspects techniques. On améliore quelques résultats obtenus par les processus gaussiens ou la méthode topologique de catégorie.
@article{AIF_1971__21_2_23_0, author = {Kaufman, Robert}, title = {Analysis on some linear sets}, journal = {Annales de l'Institut Fourier}, pages = {23--29}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {21}, number = {2}, year = {1971}, doi = {10.5802/aif.370}, zbl = {0215.25403}, mrnumber = {49 #5677}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.370/} }
Kaufman, Robert. Analysis on some linear sets. Annales de l'Institut Fourier, Volume 21 (1971) no. 2, pp. 23-29. doi : 10.5802/aif.370. https://aif.centre-mersenne.org/articles/10.5802/aif.370/
[1] An introduction to Diophantine approximation, Cambridge Tract 45, (1957). | MR | Zbl
,[2] A note on Diophantine approximation II. Mathematika 11 (1964), 50-58. | MR | Zbl
,[3] Images browniennes des ensembles parfaits, C.R. Acad. Sci., Paris 263A (1966), 613-615. | MR | Zbl
,[4] Ensembles parfaits, Hermann, Paris, 1963. | Zbl
and ,[5] Sets of multiplicity in locally compact abelian groups, Ann. Inst. Fourier (Grenoble) 16 (1966), 123-158. | Numdam | MR | Zbl
,[6] Trigonometric Series, Cambridge, (1959, 1968). | Zbl
,Cited by Sources: