ROBERT KAUFMAN

Analysis on some linear sets

<http://www.numdam.org/item?id=AIF_1971__21_2_23_0>
ANALYSIS ON SOME LINEAR SETS
by Robert KAUFMAN

0.

Let \(F \) be a compact subset of \((-\infty, \infty)\) and for each integer \(N \geq 1 \) let \(v_N = v(N; F) \) be the number of intervals \([kN^{-1}, (k+1)N^{-1}]\) meeting \(F \); \(F \) is called small provided \(\log v_N = o(\log N) \). The existence of small sets of « multiplicity » (\(M_0 \)-sets in [61, p. 344]) was proved in 1942 by Salem and used by Rudin [4, VIII]; a program somewhat analogous for locally compact abelian groups was completed by Varopoulos [5].

Does there exist a small set \(F \) with the property that both \(F \) and (say) \(F^2 = \{x^2 : x \in F\} \) are \(M_0 \)-sets? The construction of these sets doesn’t seem accessible by the method of Rudin and Salem [4], nor by the Brownian motion [3]. In this note an affirmative answer is given to a more general problem.

Theorem 1. — Let \((h_n) \) be a sequence of real functions of class \(C^1(-\infty, \infty) \) with derivatives \(h_n' > 0 \). Then there is a small set \(F \) with the property that each \(h_n(F) \) is an \(M_0 \)-set.

Small sets occur naturally in the construction of independent sets [3, 4, 5]; after the metrical theory of Diophantine approximation a set \(F \) is called metrically independent if to each integer \(N \geq 1 \) and each \(\varepsilon \) in \((0, 1)\) there is a \(U_0 \) so that the simultaneous inequalities

\[
\left| \sum_{j=1}^{N} u_jx_j - v \right| < U^{-N-\varepsilon}, \quad U = \max (|u_1|, \ldots, |u_N|) > U_0 \\
|x_i - x_j| \geq \varepsilon \quad \text{for} \quad 1 \leq i < j \leq N
\]
have no solution in integers \(u_1, \ldots, u_N, \nu \) and members \(x_1, \ldots, x_N \) of \(F \). Compare [1, VII].

Uncountable metrically independent subsets could perhaps be constructed by classical arguments, for example that of Perron [1, p. 79] or Davenport [2].

Theorem 2. — The set \(F \) determined in Theorem 1 can be required to have the property that each \(h_n(F) \) be metrically independent.

Theorems 1a, 2a. — Theorems 1 and 2 remain true provided each \(h_n \) is monotone-continuous and \(h_n' > 0 \) almost everywhere.

1.

In the proof of Theorem 1 we require two arrays of independent random variables \((Y_{k,m})\) and \((\xi_{k,m})\) defined on a space \((\Omega, P)\) for \(1 \leq k < \infty, 1 \leq m \leq k^8 \). Each \(Y_k \) is uniformly distributed upon \([0, 1]\) while

\[
P(\xi_{k,m} = 1) = \pi_k = k^{-1} = 1 - P(\xi_{k,m} = 0).
\]

Suppose that \(f \) is a measurable function on \((-\infty, \infty)\) and \(-1 \leq f \leq 1\), and let \(\mu = \pi_k E(f(Y)) \); elementary calculations show that

\[
E(e^{\xi_{k,m}/Y_k}e^{-t\xi_{k,m}}) \leq \exp \frac{1}{2} \pi_k t^2 \exp 0(\pi_k t^3)
\]

with an '0' uniform for \(-1 \leq f \leq 1, -1 \leq t \leq 1, 0 \leq \pi_k \leq 1\). Hence for any \(z > 0 \) and \(1 > t > 0 \)

\[
P\left\{ \left| \sum_m \xi_{k,m} - k^5 \right| > zk^5 \right\} \leq 2 \exp -z k^5 t \exp \frac{1}{2} k^8 \pi_k t^2 \exp 0(\pi_k k^8 t^3).
\]

Choosing \(z = t = k^{-2} \) and using \(\pi_k = k^{-1} \) we obtain

\[
P\left\{ \left| \sum_m \xi_{k,m} - k^5 \right| \geq k^3 \right\} \leq 0(1) \exp - \frac{1}{2} k.
\]

Thus

Lemma 1. — \(\sum_{m=1}^{k^4} \xi_{k,m} = k^5 + 0(k^3) \) almost surely in \(\Omega \).

A sequence of random measures \(\lambda_k \) is now determined as
follows: for any function \(g \) on \((-\infty, \infty)\)
\[
\int g \, d\lambda_k = k^{-2}g(0) + k^{-5} \sum_m \xi_{n,m}g(e^{-k \log^k k}Y_{k,m}).
\]
Thus in every instance \(\lambda_k \geq 0 \) and \(\|\lambda_k\| \geq k^{-2} \); moreover \(\|\lambda_k\| = 1 + O(k^{-2}) \) almost surely. Because \(\sum e^{-k \log^k k} < \infty \) the convolution \(\lambda = \pi \ast \lambda_k \) converges, and \(F \) is defined to be its closed support. \(F \) is contained in at most
\[
\prod_{j=1}^k [j^5 + O(j^3)] = e^{O(k \log k)}
\]
intervals of length \(e^{-k \log^k k} \).
Because \((k + 1) \log^2 (k + 1)/k \log^2 k \to 1\), this is sufficient to obtain

Lemma 2. — \(F \) is almost surely a small set.

Lemma 3. — Let \(h \in C^1(-\infty, \infty) \) and \(h' > 0 \); let \((c_m), (u_m), (\nu_m)\) be sequences of real numbers such that
\[
|c_m| + |\nu_m| = o(1) \quad \text{and} \quad |u_m| \nu_m \to \infty.
\]
Then
\[
\lim_{m \to \infty} \int_0^1 \exp iu_m h(c_m + \nu_m t) \, dt = 0.
\]

Proof. — Let \(g \) denote the \(C^1 \) function inverse to \(h \), and let \(\nu_m > 0 \). The integral is transformed to
\[
J = \int_{\alpha_m}^{\beta_m} g'(y) \exp iu_m y \nu_m^{-1} \, dy,
\]
where \(\alpha_m = h(c_m) \), \(\beta_m = h(\nu_m + c_m) \). A further substitution \(y = y_1 + \pi u_m^{-1} \) yields
\[
J = \frac{1}{2} \int_{\alpha_m}^{\beta_m} g'(y) \exp iu_m y \nu_m^{-1} \, dy
- \frac{1}{2} \int_{\alpha_m - \pi u_m^{-1}}^{\beta_m - \pi u_m^{-1}} g'(y + \pi u_m^{-1}) \exp iu_m y \nu_m^{-1} \, dy.
\]
This tends to 0 because \(\beta_m - \alpha_m = o(\nu_m) \) and \(\nu_m^{-1} \nu_m^{-1} = o(1) \).

Proof of Theorem 1. — We show that for each function \(h_n \)
\[
\lim_{n \to \infty} \int \exp iuh_n(s) \lambda \, (ds) = 0, \quad \text{almost surely. Then} \quad h_n(F) \quad \text{is an}
Mo-set; because \(h_n(F) \) is compact it is enough to prove

\[
\lim_{r \to \infty} \int \exp \frac{1}{2} h_n(s) \lambda \, (ds) = 0, \quad r = 1, 2, 3, \ldots.
\]

To each integer \(r \geq 3 \) we attach the integer \(k(r) \) defined by \(k(r) \leq \log^\frac{1}{3} r < k(r) + 1 \) and write \(\lambda'_k = \prod_{j \neq k} \lambda_j \). Then

\[
\int \exp \frac{1}{2} h_n(s) \lambda \, (ds) = \int \int \exp \frac{1}{2} h_n(s + \omega) \lambda_k (ds) \lambda'_k (d\omega).
\]

For each real number \(\omega \) in the support of \(\lambda'_k \) let \(m(\omega) \) be the expected value of \(\int \exp \frac{1}{2} h_n(s + \omega) \lambda_k (ds) \). Then

\[
\left| \int \exp \frac{1}{2} h_n(s) \lambda \, (ds) \right| \leq \left| \int \int \exp \frac{1}{2} h_n(s + \omega) \lambda_k (ds) - m(\omega)| \lambda'_k (d\omega) + \| \lambda'_k \| \max |m(\omega)|.
\]

The second integral, say \(I \), can be handled by Jensen's inequality and the estimates at the beginning of 1. Let \(-1 < t < 1\) and \(\Phi(x) = e^{tx} \). Then

\[
E(\Phi(\| \lambda'_k \|^{-1} k^4 \text{Re I})) \leq 2 \exp \frac{1}{2} k^8 \exp \left(k^4 \right).
\]

Choosing \(t = k^{-\frac{1}{2}} \) we observe

\[
P\left(|\text{Re I}| > \| \lambda'_k \| k^{-\frac{1}{2}} \right) = P\left(\Phi(\| \lambda'_k \|^{-1} k^4 \text{Re I}) > \exp k^4 \right)
\]

\[
\leq 2 \exp \frac{1}{2} k^4 \exp 0(k^{7/2}) \exp - k^4.
\]

This is the general term of a convergent series, inasmuch as \(k = k(r) > -1 + \log^\frac{1}{3} r \). Thus, almost surely in \(\Omega \), for \(r > r_0 \)

\[
|\text{Re} \int \exp \frac{1}{2} h_n(s) \lambda \, (ds)| \leq k^{-\frac{1}{2}} \| \lambda'_k \| + \| \lambda'_k \| \max |m(\omega)|
\]

and of course a similar statement holds for the imaginary part of the integral. Now

\[
|m(\omega)| \leq k^{-2} + \left| \int_0^1 \exp \frac{1}{2} h_n(e^{-k \log^\frac{1}{3} t} + \omega) \, dt \right|
\]

with \(\omega = O(1) \) and \(k = k(r) \). To apply Lemma 3 we must
verify $r^2 e^{-k \log k} \to \infty$ but this is plain from $k(r) < \log^\frac{1}{3} r$.

Because $\max_k \|\lambda_k\| < \infty$ almost surely, the proof of Theorem 1 is complete.

2.

Theorem 2 requires the construction of a random function φ in $C^\infty(-\infty, \infty)$. Let ψ be a function in $C^\infty(-\infty, \infty)$ with the properties

(i) $\psi = 0$ on $[-\infty, -2]$, $\psi = 3$ on $[2, \infty]$,
(ii) $\psi' > 0$, and $\psi' > 1$ on $(-1, 1)$.

Let (a_p) be a sequence of real numbers such that every real number belongs to infinitely many of the intervals $(a_p - p^{-1}, a_p + p^{-1})$. Finally, let (Z_p) be a sequence of independent random variables on (Ω, P), uniformly distributed upon $[0, 1]$. We define

$$\varphi(x) = \sum_{p=1}^\infty e^{-p^\frac{1}{2}}(p^{-1}Z_p + p^\frac{1}{2}(x - a_p)) + x.$$

To each compact set F and number $\delta > 0$ there are numbers q_1 and q_2 so that

$q_1 \geq 4$, $q_1^\frac{1}{2} \delta \geq 5$, $\bigcup_{p=q_1}^{q_2} (a_p - p^{-1}, a_p + p^{-1}) \ni F$.

Theorem 3. — Let F be a small set and $h \in C^1(-\infty, \infty)$, $h' > 0$; then $h\varphi(F)$ is almost surely metrically independent.

For each integer $U \geq 1$ we can choose a subset $S(N, U)$ of R^N so that every point in F^N has distance $< U^{-3N}$ from some point in $S(N, U)$, while card $S(N, U) \leq v^N(NU^X; F)$.

Beginning with an inequality

$$\left| \sum_{j=1}^N u_j h\varphi(y_j) - \nu \right| < U^{-N - \varepsilon}, \quad |h\varphi(y_j) - h\varphi(y_i)| > \varepsilon \quad (i \neq j)$$

we conclude first that $|y_i - y_j| > \gamma$ for some fixed $\gamma > 0$.

Let (z_1, \ldots, z_n) be the member of $S(N, U)$ associated to
\((y_1, \ldots, y_n) \). Then
\[
(1) \quad \left| \sum_{j=1}^{N} u_j h\varphi(z_j) - \nu \right| < U^{-N-\varepsilon} + 0(U/U^{-3N}),
\]
|\(z_i - z_j | > \eta - 2U^{-3N}. \)

For large \(U \) we can find \(\delta < \eta - 2U^{-3N} \) and corresponding numbers \(q_1, q_2 \). Let \(q_1 \leq p \leq q_2, |z_i - a_p| < p^{-1}. \)

\[
\left| p^{-1}Z_p + p^{\frac{1}{2}}(z_i - a_p) \right| < p^{-1} + p^{-\frac{1}{2}} < 1, \\
\left| p^{-1}Z_p + p^{\frac{1}{2}}(Z_j - a_p) \right| > p^{\frac{1}{2}}\delta - p^{-1} - p^{-\frac{1}{2}} > 4, \quad \text{when } j \neq i.
\]

Therefore \(\frac{\partial}{\partial Z_p} \sum_{j=1}^{N} u_j h\varphi(z_j) = u_l \frac{\partial}{\partial Z_p} h\varphi(Z_l) \) exceeds \(\alpha|u_l| \) in modulus, with an \(\alpha > 0 \) independent of \(u_1, \ldots, u_n \). Hence the probability of the inequality (1) is \(0(U^{-1}.U^{-N-\varepsilon}) \) for each \((z_1, \ldots, z_N). \) The requirement \(U = \max (|u_1|, \ldots, |u_N|) \) determines \(0(U^{N-1}) \) N-tuples and plainly \(\nu = 0(U) \). Because \(F \) is a small set \(\nu^{N}(NU^{3N}; F) = U^{o(1)} \) as \(U \to \infty \). Theorem 3 follows from this and \(\Sigma U^{-1+i}U^{o(1)} < \infty. \)

Proof of Theorem 2. — Here we use the fact that \(F \) and \(\varphi \) depend on independent \(\sigma \)-fields. \(F \) is almost surely small, whence each \(h_n \varphi(F) \) is almost surely metrically independent, by Theorem 3. By Theorem 1, each \(h_n \varphi(F) \) is almost surely an \(M_0 \)-set and Theorem 2 is proved.

3.

Proof of Theorems 1a and 2a. — According to a theorem of Marcinkiewicz [61I, pp. 73-77], to each \(\delta > 0 \) there exist functions \(g_n \) in \(C^1(-\infty, \infty) \) so that
\[
m(h_n \neq g_n) < \delta n^{-2}, \quad n = 1, 2, 3, \ldots.
\]

At almost all points of density of the set \((h_n = g_n), g_n = h_n > 0 \). Passing to a perfect subset of the set \((g_n > 0, g_n' = h_n, g_n = h_n) \), we can find a \(\tilde{g}_n \) in \(C^1(-\infty, \infty) \) such that
\[
m(h_n \neq \tilde{g}_n) < 2\delta n^{-2}, \quad n = 1, 2, 3, \ldots,
\]
\(\tilde{g}_n' > 0 \) everywhere.
We observe next that to each $\varepsilon > 0$ there is a constant $B(\varepsilon)$ so that for all Borel sets S

$$\int_{\Omega} \lambda(S) \, dP \leq \varepsilon + B(\varepsilon)m(S).$$

Thus to each $\varepsilon > 0$ we can choose functions \tilde{g}_n by Marcin-
kiewicz' theorem, so that

$$P\{\lambda(x: \tilde{g}_n \varphi(x) \neq h_n \varphi(x) \text{ for some } n) > \varepsilon\} < \varepsilon.$$

In proving this implication it must be observed that φ and λ are stochastically independent and $\varphi' > 1$. Writing G for the inner set in the last inequality, we know that $h_n \varphi(G' \cap F) = \tilde{g}_n \varphi(G' \cap F)$ is almost surely metrically inde-
pendent and that $h_n \varphi(G' \cap F)$ is almost surely an M_0-set, if only $\lambda(G' \cap F) > 0$; and this holds for $\|\lambda\| > \varepsilon$ excepting an event of probability $< \varepsilon$. Thus Theorems 1a and 2a are derived from Theorems 1 and 2.

BIBLIOGRAPHY

Manuscrit reçu le 21 avril 1970.

Robert Kaufman
Altgeld Hall,
Department of Mathematics,
University of Illinois,
Urbana (Illinois).