We prove that level Witten–Reshetikhin–Turaev quantum representations, also known as the Fibonacci representations, of mapping class groups are locally rigid. More generally, for any prime level , we prove that the level quantum representations are locally rigid on all surfaces of genus if and only if they are locally rigid on surfaces of genus with at most boundary components. This reduces local rigidity in prime level to a finite number of cases.
Nous démontrons la rigidité locale des représentations quantiques de Witten–Reshetikhin–Turaev de niveau des groupes modulaires de surfaces, aussi connues sous le nom de représentations Fibonacci. Plus généralement, pour tout niveau premier , nous démontrons que les représentations quantiques de Witten–Reshetikhin–Turaev de niveau sont localement rigides pour toutes les surfaces de genre si et seulement si elles sont localement rigides pour les surfaces de genre avec au plus composantes de bord. Cela réduit la rigidité en niveau premier à un nombre fini de cas.
Revised:
Accepted:
Online First:
Keywords: Quantum Representations, Mapping Class Groups, Rigidity, TQFT
Mots-clés : Représentations quantiques, groupes modulaires de surfaces, rigidité, TQCT
Godfard, Pierre 1
@unpublished{AIF_0__0_0_A165_0, author = {Godfard, Pierre}, title = {Rigidity of {Fibonacci} representations of mapping class groups}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3676}, language = {en}, note = {Online first}, }
Godfard, Pierre. Rigidity of Fibonacci representations of mapping class groups. Annales de l'Institut Fourier, Online first, 35 p.
[1] Rigidity phenomena in the mapping class group, Handbook of Teichmüller theory. Volume VI, European Mathematical Society, 2016, pp. 131-165 ddd.uab.cat/record/196687 | DOI | MR | Zbl
[2] Three-manifold invariants derived from the Kauffman bracket, Topology, Volume 31 (1992) no. 4, pp. 685-699 | DOI | MR | Zbl
[3] Topological quantum field theories derived from the Kauffman bracket, Topology, Volume 34 (1995) no. 4, pp. 883-927 | DOI | MR | Zbl
[4] Cohomology of groups, Graduate Texts in Mathematics, 87, Springer, 1982 | DOI | MR | Zbl
[5] Toledo Invariants of Topological Quantum Field Theories (2022) (https://arxiv.org/abs/2207.09952)
[6] Orbifold Kähler Groups Related to Mapping Class Groups (2021) (https://arxiv.org/abs/2112.06726)
[7] A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, 2011 | DOI | MR | Zbl
[8] On mapping class group quotients by powers of Dehn twists and their representations, Topology and geometry. A collection of essays dedicated to Vladimir G. Turaev (Papadopoulos, A., ed.), European Mathematical Society, 2021, pp. 273-308 | DOI | MR | Zbl
[9] Integral lattices in TQFT, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 5, pp. 815-844 https://eudml.org/doc/82727 | DOI | Numdam | MR | Zbl
[10] Maslov index, Lagrangians, mapping class groups and TQFT, Forum Math., Volume 25 (2013) no. 5, pp. 1067-1106 | DOI | MR | Zbl
[11] Irreducibility of quantum representations of mapping class groups with boundary, Quantum Topol., Volume 9 (2018) no. 4, pp. 633-641 | DOI | MR | Zbl
[12] Introduction to quantum representations of mapping class groups, Topology and geometry. A collection of essays dedicated to Vladimir G. Turaev (Papadopoulos, Athanase, ed.), European Mathematical Society, 2021, pp. 109-130 | DOI | MR | Zbl
[13] Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., Volume 103 (1991) no. 3, pp. 547-597 https://eudml.org/doc/143870 | DOI | MR | Zbl
[14] Irreducibility of some quantum representations of mapping class groups, J. Knot Theory Ramifications, Volume 10 (2001) no. 5, pp. 763-767 | DOI | MR | Zbl
[15] Local fields. Translated from the French, Graduate Texts in Mathematics, 67, Springer, 1979 | DOI | MR | Zbl
[16] Higgs bundles and local systems, Publ. Math., Inst. Hautes Étud. Sci., Volume 75 (1992), pp. 5-95 https://eudml.org/doc/104080 | DOI | Numdam | MR | Zbl
[17] Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter, 2016 | DOI | MR | Zbl
[18] Remarks on the cohomology of groups, Ann. Math., Volume 80 (1964), pp. 149-157 semanticscholar.org/paper/96ad3885ff5fe998d64e453422f37bc950bb38ae | DOI | MR | Zbl
Cited by Sources: