Rigidity of Fibonacci representations of mapping class groups
Annales de l'Institut Fourier, Online first, 35 p.

We prove that level 5 Witten–Reshetikhin–Turaev SO(3) quantum representations, also known as the Fibonacci representations, of mapping class groups are locally rigid. More generally, for any prime level , we prove that the level SO(3) quantum representations are locally rigid on all surfaces of genus g3 if and only if they are locally rigid on surfaces of genus 3 with at most 3 boundary components. This reduces local rigidity in prime level to a finite number of cases.

Nous démontrons la rigidité locale des représentations quantiques SO(3) de Witten–Reshetikhin–Turaev de niveau 5 des groupes modulaires de surfaces, aussi connues sous le nom de représentations Fibonacci. Plus généralement, pour tout niveau premier , nous démontrons que les représentations quantiques SO(3) de Witten–Reshetikhin–Turaev de niveau sont localement rigides pour toutes les surfaces de genre g3 si et seulement si elles sont localement rigides pour les surfaces de genre 3 avec au plus 3 composantes de bord. Cela réduit la rigidité en niveau premier à un nombre fini de cas.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/aif.3676
Classification: 57R56, 14D07, 14H10
Keywords: Quantum Representations, Mapping Class Groups, Rigidity, TQFT
Mots-clés : Représentations quantiques, groupes modulaires de surfaces, rigidité, TQCT

Godfard, Pierre 1

1 Sorbonne Université, Institut de mathématiques, de Jussieu – Paris Rive Gauche, 4 place Jussieu, 75005 (Paris)
@unpublished{AIF_0__0_0_A165_0,
     author = {Godfard, Pierre},
     title = {Rigidity of {Fibonacci} representations of mapping class groups},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3676},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Godfard, Pierre
TI  - Rigidity of Fibonacci representations of mapping class groups
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3676
LA  - en
ID  - AIF_0__0_0_A165_0
ER  - 
%0 Unpublished Work
%A Godfard, Pierre
%T Rigidity of Fibonacci representations of mapping class groups
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3676
%G en
%F AIF_0__0_0_A165_0
Godfard, Pierre. Rigidity of Fibonacci representations of mapping class groups. Annales de l'Institut Fourier, Online first, 35 p.

[1] Aramayona, Javier; Souto, Juan Rigidity phenomena in the mapping class group, Handbook of Teichmüller theory. Volume VI, European Mathematical Society, 2016, pp. 131-165 ddd.uab.cat/record/196687 | DOI | MR | Zbl

[2] Blanchet, Christian; Habegger, Nathan; Masbaum, Gregor; Vogel, Pierre Three-manifold invariants derived from the Kauffman bracket, Topology, Volume 31 (1992) no. 4, pp. 685-699 | DOI | MR | Zbl

[3] Blanchet, Christian; Habegger, Nathan; Masbaum, Gregor; Vogel, Pierre Topological quantum field theories derived from the Kauffman bracket, Topology, Volume 34 (1995) no. 4, pp. 883-927 | DOI | MR | Zbl

[4] Brown, Kenneth S. Cohomology of groups, Graduate Texts in Mathematics, 87, Springer, 1982 | DOI | MR | Zbl

[5] Deroin, Bertrand; Marché, Julien Toledo Invariants of Topological Quantum Field Theories (2022) (https://arxiv.org/abs/2207.09952)

[6] Eyssidieux, Philippe; Funar, Louis Orbifold Kähler Groups Related to Mapping Class Groups (2021) (https://arxiv.org/abs/2112.06726)

[7] Farb, Benson; Margalit, Dan A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, 2011 | DOI | MR | Zbl

[8] Funar, Louis On mapping class group quotients by powers of Dehn twists and their representations, Topology and geometry. A collection of essays dedicated to Vladimir G. Turaev (Papadopoulos, A., ed.), European Mathematical Society, 2021, pp. 273-308 | DOI | MR | Zbl

[9] Gilmer, Patrick M.; Masbaum, Gregor Integral lattices in TQFT, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 5, pp. 815-844 https://eudml.org/doc/82727 | DOI | Numdam | MR | Zbl

[10] Gilmer, Patrick M.; Masbaum, Gregor Maslov index, Lagrangians, mapping class groups and TQFT, Forum Math., Volume 25 (2013) no. 5, pp. 1067-1106 | DOI | MR | Zbl

[11] Koberda, Thomas; Santharoubane, Ramanujan Irreducibility of quantum representations of mapping class groups with boundary, Quantum Topol., Volume 9 (2018) no. 4, pp. 633-641 | DOI | MR | Zbl

[12] Marché, Julien Introduction to quantum representations of mapping class groups, Topology and geometry. A collection of essays dedicated to Vladimir G. Turaev (Papadopoulos, Athanase, ed.), European Mathematical Society, 2021, pp. 109-130 | DOI | MR | Zbl

[13] Reshetikhin, Nikolai; Turaev, Vladimir G. Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., Volume 103 (1991) no. 3, pp. 547-597 https://eudml.org/doc/143870 | DOI | MR | Zbl

[14] Roberts, Justin Irreducibility of some quantum representations of mapping class groups, J. Knot Theory Ramifications, Volume 10 (2001) no. 5, pp. 763-767 | DOI | MR | Zbl

[15] Serre, Jean-Pierre Local fields. Translated from the French, Graduate Texts in Mathematics, 67, Springer, 1979 | DOI | MR | Zbl

[16] Simpson, Carlos T. Higgs bundles and local systems, Publ. Math., Inst. Hautes Étud. Sci., Volume 75 (1992), pp. 5-95 https://eudml.org/doc/104080 | DOI | Numdam | MR | Zbl

[17] Turaev, Vladimir G. Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter, 2016 | DOI | MR | Zbl

[18] Weil, André Remarks on the cohomology of groups, Ann. Math., Volume 80 (1964), pp. 149-157 semanticscholar.org/paper/96ad3885ff5fe998d64e453422f37bc950bb38ae | DOI | MR | Zbl

Cited by Sources: