Dvoretzky-type theorem for locally finite subsets of a Hilbert space
Annales de l'Institut Fourier, Online first, 43 p.

The main result of the paper: Given any ε>0, every locally finite subset of 2 admits a (1+ε)-bilipschitz embedding into an arbitrary infinite-dimensional Banach space. The result is based on two results which are of independent interest:

(1) A direct sum of two finite-dimensional Euclidean spaces contains a sub-sum of a controlled dimension which is ε-close to a direct sum with respect to a 1-unconditional basis in a two-dimensional space.

(2) For any finite-dimensional Banach space Y and its direct sum X with itself with respect to a 1-unconditional basis in a two-dimensional space, there exists a (1+ε)-bilipschitz embedding of Y into X which on a small ball coincides with the identity map onto the first summand and on the complement of a large ball coincides with the identity map onto the second summand.

Le résultat principal de l’article : étant donné ε>0, chaque sous-ensemble localement fini de 2 admet un plongement (1+ε)-bilipschitz dans n’importe quel espace de Banach de dimension infinie. Le résultat est basé sur deux résultats qui présentent un intérêt indépendant :

(1) Une somme directe de deux espaces euclidiens de dimension finie contient une sous-somme de dimension contrôlée qui est ε-proche d’une somme directe par rapport à une base 1-inconditionnelle dans un espace à deux dimensions.

(2) Pour tout espace de Banach de dimension finie Y et sa somme directe X avec lui-même par rapport à une base 1-inconditionnelle dans un espace à deux dimensions, il existe un plongement (1+ε)-bilipschitz de Y dans X qui coïncide, sur une petite boule, avec l’identité sur la première composante, et qui coïncide, sur le complément d’une grosse boule, avec l’identité sur la deuxième composante.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/aif.3672
Classification: 46B85, 30L05, 46B07, 51F30
Keywords: Bilipschitz embedding, Dvoretzky Theorem, Finite-dimensional decomposition, Unconditional
Mots-clés : Plongement bilipschitz, Théorème de Dvoretzky, décomposition finie-dimensionnelle, base inconditionnelle

Catrina, Florin 1; Ostrovska, Sofiya 2; Ostrovskii, Mikhail I. 1

1 Department of Mathematics and Computer Science, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439 (USA)
2 Department of Mathematics, Atilim University, 06830 Incek, Ankara (Turkey)
@unpublished{AIF_0__0_0_A152_0,
     author = {Catrina, Florin and Ostrovska, Sofiya and Ostrovskii, Mikhail  I.},
     title = {Dvoretzky-type theorem for locally finite subsets of a {Hilbert} space},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3672},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Catrina, Florin
AU  - Ostrovska, Sofiya
AU  - Ostrovskii, Mikhail  I.
TI  - Dvoretzky-type theorem for locally finite subsets of a Hilbert space
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3672
LA  - en
ID  - AIF_0__0_0_A152_0
ER  - 
%0 Unpublished Work
%A Catrina, Florin
%A Ostrovska, Sofiya
%A Ostrovskii, Mikhail  I.
%T Dvoretzky-type theorem for locally finite subsets of a Hilbert space
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3672
%G en
%F AIF_0__0_0_A152_0
Catrina, Florin; Ostrovska, Sofiya; Ostrovskii, Mikhail  I. Dvoretzky-type theorem for locally finite subsets of a Hilbert space. Annales de l'Institut Fourier, Online first, 43 p.

[1] Artstein-Avidan, Shiri; Giannopoulos, Apostolos; Milman, Vitali D. Asymptotic geometric analysis. Part I, Mathematical Surveys and Monographs, 202, American Mathematical Society, 2015, xx+451 pages | DOI | MR | Zbl

[2] Artstein-Avidan, Shiri; Giannopoulos, Apostolos; Milman, Vitali D. Asymptotic geometric analysis. Part II, Mathematical Surveys and Monographs, 261, American Mathematical Society, 2021, xxxvii+645 pages | DOI | MR | Zbl

[3] Bartal, Yair; Bollobás, Béla; Mendel, Manor Ramsey-type theorems for metric spaces with applications to online problems, J. Comput. Syst. Sci., Volume 72 (2006) no. 5, pp. 890-921 | DOI | MR | Zbl

[4] Bartal, Yair; Linial, Nathan; Mendel, Manor; Naor, Assaf On metric Ramsey-type phenomena, Ann. Math., Volume 162 (2005) no. 2, pp. 643-709 | DOI | MR | Zbl

[5] Baudier, Florent; Lancien, Gilles Embeddings of locally finite metric spaces into Banach spaces, Proc. Am. Math. Soc., Volume 136 (2008) no. 3, pp. 1029-1033 | DOI | MR | Zbl

[6] Baudier, Florent; Lancien, Gilles; Schlumprecht, Thomas The coarse geometry of Tsirelson’s space and applications, J. Am. Math. Soc., Volume 31 (2018) no. 3, pp. 699-717 | DOI | MR | Zbl

[7] Benyamini, Yoav; Lindenstrauss, Joram Geometric nonlinear functional analysis. Vol. 1, Colloquium Publications, 48, American Mathematical Society, 2000, xii+488 pages | DOI | MR | Zbl

[8] Bourgain, Jean; Figiel, Tadeusz; Milman, Vitali D. On Hilbertian subsets of finite metric spaces, Isr. J. Math., Volume 55 (1986) no. 2, pp. 147-152 | DOI | MR | Zbl

[9] Buyalo, Sergei; Schroeder, Viktor Elements of asymptotic geometry, EMS Monographs in Mathematics, European Mathematical Society, 2007, xii+200 pages | DOI | MR | Zbl

[10] Dadarlat, Marius; Guentner, Erik Constructions preserving Hilbert space uniform embeddability of discrete groups, Trans. Am. Math. Soc., Volume 355 (2003) no. 8, pp. 3253-3275 | DOI | MR | Zbl

[11] DiBenedetto, Emmanuele Real analysis, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser/Springer, 2016, xxxii+596 pages | DOI | MR | Zbl

[12] Dvoretzky, Aryeh A theorem on convex bodies and applications to Banach spaces, Proc. Natl. Acad. Sci. USA, Volume 45 (1959), pp. 223-226 | DOI | MR | Zbl

[13] Dvoretzky, Aryeh Some results on convex bodies and Banach spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, 1961, pp. 123-160 | MR | Zbl

[14] Gordon, Yehoram Gaussian processes and almost spherical sections of convex bodies, Ann. Probab., Volume 16 (1988) no. 1, pp. 180-188 | DOI | MR | Zbl

[15] Grothendieck, Alexander Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzky–Rogers, Bol. Soc. Mat. São Paulo, Volume 8 (1953), pp. 81-110 | MR | Zbl

[16] Gruber, Peter M. Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften, 336, Springer, 2007, xiv+578 pages | DOI | MR | Zbl

[17] Johnson, William B.; Lindenstrauss, Joram Basic concepts in the geometry of Banach spaces, Handbook of the geometry of Banach spaces. Volume 1, Elsevier, 2001, pp. 1-84 | DOI | MR | Zbl

[18] Kilbane, James; Ostrovskii, Mikhail I. There is no finitely isometric Krivine’s theorem, Houston J. Math., Volume 44 (2018) no. 1, pp. 309-317 | MR | Zbl

[19] Larman, David G.; Mani, Peter Almost ellipsoidal sections and projections of convex bodies, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 529-546 | DOI | MR | Zbl

[20] Lindenstrauss, Joram; Tzafriri, Lior Classical Banach spaces. I. Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 92, Springer, 1977, xiii+188 pages | MR | Zbl

[21] Lindenstrauss, Joram; Tzafriri, Lior Classical Banach spaces. II. Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Springer, 1979, x+243 pages | DOI | MR | Zbl

[22] Matoušek, Jiří Lectures on discrete geometry, Graduate Texts in Mathematics, 212, Springer, 2002, xvi+481 pages | DOI | MR | Zbl

[23] Mendel, Manor; Naor, Assaf Ramsey partitions and proximity data structures, J. Eur. Math. Soc., Volume 9 (2007) no. 2, pp. 253-275 | DOI | MR | Zbl

[24] Mendel, Manor; Naor, Assaf Ultrametric subsets with large Hausdorff dimension, Invent. Math., Volume 192 (2013) no. 1, pp. 1-54 | DOI | MR | Zbl

[25] Milman, Vitali D. A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies, Funkts. Anal. Prilozh., Volume 5 (1971) no. 4, pp. 28-37 | MR

[26] Milman, Vitali D.; Schechtman, Gideon Asymptotic theory of finite-dimensional normed spaces. With an appendix by M. Gromov, Lecture Notes in Mathematics, 1200, Springer, 1986, viii+156 pages | MR | Zbl

[27] Naor, Assaf An introduction to the Ribe program, Jpn. J. Math. (3), Volume 7 (2012) no. 2, pp. 167-233 | DOI | MR | Zbl

[28] Naor, Assaf; Tao, Terence Scale-oblivious metric fragmentation and the nonlinear Dvoretzky theorem, Isr. J. Math., Volume 192 (2012) no. 1, pp. 489-504 | DOI | MR | Zbl

[29] Nowak, Piotr W. On coarse embeddability into l p -spaces and a conjecture of Dranishnikov, Fundam. Math., Volume 189 (2006) no. 2, pp. 111-116 | DOI | MR | Zbl

[30] Nowak, Piotr W.; Yu, Guoliang Large scale geometry, EMS Textbooks in Mathematics, European Mathematical Society, 2012, xiv+189 pages | DOI | MR | Zbl

[31] Odell, Edward; Schlumprecht, Thomas The distortion problem, Acta Math., Volume 173 (1994) no. 2, pp. 259-281 | DOI | MR | Zbl

[32] Ostrovska, Sofiya; Ostrovskii, Mikhail I. Distortion in the finite determination result for embeddings of locally finite metric spaces into Banach spaces, Glasg. Math. J., Volume 61 (2019) no. 1, pp. 33-47 | DOI | MR

[33] Ostrovska, Sofiya; Ostrovskii, Mikhail I. On embeddings of locally finite metric spaces into p , J. Math. Anal. Appl., Volume 474 (2019) no. 1, pp. 666-673 | DOI | MR | Zbl

[34] Ostrovskii, Mikhail I. Topologies on the set of all subspaces of a Banach space and related questions of Banach space geometry, Quaest. Math., Volume 17 (1994) no. 3, pp. 259-319 | DOI | MR | Zbl

[35] Ostrovskii, Mikhail I. On comparison of the coarse embeddability into a Hilbert space and into other Banach spaces (2006) (available at http://facpub.stjohns.edu/ostrovsm)

[36] Ostrovskii, Mikhail I. Coarse embeddability into Banach spaces, Topol. Proc., Volume 33 (2009), pp. 163-183 | MR | Zbl

[37] Ostrovskii, Mikhail I. Metric embeddings. Bilipschitz and coarse embeddings into Banach spaces, De Gruyter Studies in Mathematics, 49, Walter de Gruyter, 2013, xii+372 pages | DOI | MR | Zbl

[38] Ostrovskii, Mikhail I. Isometric embeddings of finite subsets of 2 into infinite-dimensional Banach spaces (2015) (available at https://mathoverflow.net/questions/221181/)

[39] Paouris, Grigoris; Valettas, Petros Dichotomies, structure, and concentration in normed spaces, Adv. Math., Volume 332 (2018), pp. 438-464 | DOI | MR | Zbl

[40] Schechtman, Gideon Two observations regarding embedding subsets of Euclidean spaces in normed spaces, Adv. Math., Volume 200 (2006) no. 1, pp. 125-135 | DOI | MR | Zbl

[41] Tsirelson, Boris S. Not every Banach space contains an imbedding of l p or c 0 , Funct. Anal. Appl., Volume 8 (1974), pp. 138-141 | DOI | Zbl

Cited by Sources: