Induced differential characters on nonlinear Graßmannians
Annales de l'Institut Fourier, Volume 74 (2024) no. 6, pp. 2483-2503.

Using a nonlinear version of the tautological bundle over Graßmannians, we construct a transgression map for differential characters from M to the nonlinear Graßmannian Gr S (M) of submanifolds of M of a fixed type S. In particular, we obtain prequantum circle bundles of the nonlinear Graßmannian endowed with the Marsden–Weinstein symplectic form. The associated Kostant–Souriau prequantum extension yields central Lie group extensions of a group of volume-preserving diffeomorphisms integrating Lichnerowicz cocycles.

En utilisant une version non-linéaire du fibré tautologique sur les Graßmanniennes, nous construisons une application de transgression pour les caractères différentiels de M à la Graßmannienne non-linéaire Gr S (M) des sous-variétés de M d’un type fixé S. En particulier, nous obtenons des fibrés en cercles préquantiques au dessus de la Graßmannienne non-linéaire doté de la forme symplectique de Marsden–Weinstein. L’extension préquantique de Kostant–Souriau associée donne des extensions centrales de groupes de Lie d’un groupe de difféomorphismes préservant le volume et intégrant les cocycles de Lichnerowicz.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3661
Classification: 58D05, 58D10, 53D50, 53C08, 37K65
Keywords: Volume-preserving diffeomorphism, Nonlinear Graßmannian, Tautological bundle, Differential character
Mot clés : Difféomorphisme préservant le volume, Grassmannienne non-linéaire, Fibré tautologique, Caractère différentiel

Diez, Tobias 1; Janssens, Bas 1; Neeb, Karl-Hermann 2; Vizman, Cornelia 3

1 Institute of Applied Mathematics, Delft University of Technology, 2628 XE Delft, The Netherlands
2 Department of Mathematics, FAU Erlangen-Nürnberg, 91058 Erlangen, Germany
3 Department of Mathematics, West University of Timişoara. RO–300223 Timişoara. Romania
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2024__74_6_2483_0,
     author = {Diez, Tobias and Janssens, Bas and Neeb, Karl-Hermann and Vizman, Cornelia},
     title = {Induced differential characters on nonlinear {Gra{\ss}mannians}},
     journal = {Annales de l'Institut Fourier},
     pages = {2483--2503},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {74},
     number = {6},
     year = {2024},
     doi = {10.5802/aif.3661},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3661/}
}
TY  - JOUR
AU  - Diez, Tobias
AU  - Janssens, Bas
AU  - Neeb, Karl-Hermann
AU  - Vizman, Cornelia
TI  - Induced differential characters on nonlinear Graßmannians
JO  - Annales de l'Institut Fourier
PY  - 2024
SP  - 2483
EP  - 2503
VL  - 74
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3661/
DO  - 10.5802/aif.3661
LA  - en
ID  - AIF_2024__74_6_2483_0
ER  - 
%0 Journal Article
%A Diez, Tobias
%A Janssens, Bas
%A Neeb, Karl-Hermann
%A Vizman, Cornelia
%T Induced differential characters on nonlinear Graßmannians
%J Annales de l'Institut Fourier
%D 2024
%P 2483-2503
%V 74
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3661/
%R 10.5802/aif.3661
%G en
%F AIF_2024__74_6_2483_0
Diez, Tobias; Janssens, Bas; Neeb, Karl-Hermann; Vizman, Cornelia. Induced differential characters on nonlinear Graßmannians. Annales de l'Institut Fourier, Volume 74 (2024) no. 6, pp. 2483-2503. doi : 10.5802/aif.3661. https://aif.centre-mersenne.org/articles/10.5802/aif.3661/

[1] Banyaga, Augustin Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv., Volume 53 (1978), pp. 174-227 | DOI | Zbl

[2] Bär, Christian; Becker, Christian Differential Characters, Lecture Notes in Mathematics, 2112, Springer, 2014

[3] Brylinski, Jean-Luc Loop Spaces, Characteristic Classes and Geometric Quantization, Modern Birkhäuser Classics, Birkhäuser, 2007

[4] Calabi, Eugenio On the group of automorphisms of a symplectic manifold, Problems in Analysis: A Symposium in Honor of Salomon Bochner (Princeton Mathematical Series), Volume 31, Princeton University Press, 1970

[5] Cheeger, Jeff; Simons, James Differential characters and geometric invariants, Geometry and Topology (College Park, Md., 1983/84) (Lecture Notes in Mathematics), Volume 1167, Springer, 1983, pp. 50-80 | Zbl

[6] Diez, Tobias; Janssens, Bas; Neeb, Karl-Hermann; Vizman, Cornelia Central extensions of Lie groups preserving a differential form, Int. Math. Res. Not., Volume 2021 (2021) no. 5, pp. 3794-3821 | DOI | Zbl

[7] Fiorenza, Domenico; Lê, Hông Vân Formally integrable complex structures on higher dimensional knot spaces, J. Symplectic Geom., Volume 19 (2021) no. 3, pp. 507-529 | DOI | Zbl

[8] Greub, Werner; Halperin, Stephen; Vanstone, Ray Connections, curvature, and cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles, Pure and Applied Mathematics, 47, Academic Press Inc., 1972

[9] Haller, Stefan; Vizman, Cornelia Nonlinear Graßmannians as coadjoint orbits, Math. Ann., Volume 329 (2004) no. 4, pp. 771-785 | DOI | Zbl

[10] Haller, Stefan; Vizman, Cornelia Nonlinear flag manifolds as coadjoint orbits, Ann. Global Anal. Geom., Volume 58 (2020) no. 4, pp. 385-413 | DOI | Zbl

[11] Ismagilov, Rais S. Representations of infinite-dimensional groups, Translations of Mathematical Monographs, 152, American Mathematical Society, 1996 | DOI

[12] Kirillov, Alexandre A.; Yurʼev, Denis V. Representations of the Virasoro algebra by the orbit method, J. Geom. Phys., Volume 5 (1988) no. 3, pp. 351-363 | DOI | Zbl

[13] Kostant, Bertram Quantization and unitary representations. I: Prequantization, Lectures in modern analysis and applications. III (Lecture Notes in Mathematics), Volume 170, Springer, 1970, pp. 87-208 | Zbl

[14] Kriegl, Andreas; Michor, Peter W. The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs, 53, American Mathematical Society, 1997 | DOI

[15] Kronheimer, Peter B. An obstruction to removing intersection points in immersed surfaces, Topology, Volume 36 (1997) no. 4, pp. 931-962 | DOI | Zbl

[16] LeBrun, Claude A Kähler structure on the space of string worldsheets, Class. Quant. Grav., Volume 10 (1993) no. 9, p. L141-L148 | DOI | Zbl

[17] Lempert, László Loop spaces as complex manifolds, J. Differ. Geom., Volume 38 (1993) no. 3, pp. 519-543 | Zbl

[18] Lichnerowicz, André Algèbre de Lie des automorphismes infinitésimaux d’une structure unimodulaire, Ann. Inst. Fourier, Volume 24 (1974) no. 3, pp. 219-266 | DOI | Numdam | Zbl

[19] Marsden, Jerrold; Weinstein, Alan Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D, Volume 7 (1983), pp. 305-323 | DOI | Zbl

[20] Neeb, Karl-Hermann Infinite-dimensional groups and their representations, Lie theory. Lie algebras and representations (Progress in Mathematics), Volume 228, Birkhäuser, 2004, pp. 213-328 | Zbl

[21] Neeb, Karl-Hermann Towards a Lie theory of locally convex groups, Jpn. J. Math., Volume 1 (2006) no. 2, pp. 291-468 | DOI | Zbl

[22] Neeb, Karl-Hermann; Vizman, Cornelia Flux homomorphisms and principal bundles over infinite dimensional manifolds, Monatsh. Math., Volume 139 (2003) no. 4, pp. 309-333 | DOI | Zbl

[23] Pressley, Andrew; Segal, Graeme Loop Groups, Oxford University Press, 1986

[24] Roger, Claude Extensions centrales d’algèbres et de groupes de Lie de dimension infinie,algèbre de Virasoro et généralisations, Rep. Math. Phys., Volume 35 (1995) no. 2-3, pp. 225-266 | DOI | Zbl

[25] Smale, Steve Diffeomorphisms of the 2-sphere, Proc. Am. Math. Soc., Volume 10 (1959), pp. 621-626 | DOI | Zbl

[26] Souriau, Jean-Marie Structure des systèmes dynamiques. Maitrises de mathématique, Dunod, 1970

[27] Verbitsky, Misha A formally Kähler structure on a knot space of a G 2 -manifold, Sel. Math., New Ser., Volume 18 (2012) no. 3, pp. 539-555 | DOI | Zbl

[28] Vizman, Cornelia Lichnerowicz cocycles and central Lie group extensions, An. Univ. Vest Timiș., Ser. Mat.-Inform., Volume 48 (2010) no. 1-2, pp. 285-297 | Zbl

[29] Vizman, Cornelia Induced differential forms on manifolds of functions, Arch. Math., Brno, Volume 47 (2011) no. 3, pp. 201-215 | Zbl

Cited by Sources: