Thurston’s compactification via geodesic currents: the case of non-compact finite area surfaces
Annales de l'Institut Fourier, Online first, 22 p.

In 1988, Bonahon gave a construction of Thurston’s compactification of Teichmüller space using geodesic currents. His argument only applies in the case of closed surfaces, and there are good reasons for that. We present a variant which applies to surfaces of finite area and to do so we prove a control theorem for sequences of random geodesics. Note that this theorem may be of independant interest, especially when the surface is non-compact.

En 1988, Bonahon a donné une preuve de la compactification de Thurston de l’espace de Teichmüller utilisant les courants géodésiques. Pour des raisons bien précises, cette preuve ne s’applique que dans le cas des surfaces fermées. On présente ici une variante des arguments de Bonahon qui s’applique aux surfaces d’aire finie grâce à un théorème de contrôle sur les suites de géodésiques aléatoires. Notons que ce théorème a son propre intérêt notamment lorsque la surface n’est pas compacte.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/aif.3625
Classification: 57K20, 53C22, 57M50, 37D40
Keywords: Teichmüller space, Thurston’s compactification, Geodesic currents, Sequences of random geodesics.
Mot clés : Espace de Teichmüller, compactification de Thurston, courants géodésiques, suites de géodésiques aléatoires.
Trin, Marie 1

1 Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes (France)
@unpublished{AIF_0__0_0_A90_0,
     author = {Trin, Marie},
     title = {Thurston{\textquoteright}s compactification via geodesic currents: the case of non-compact finite area surfaces},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3625},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Trin, Marie
TI  - Thurston’s compactification via geodesic currents: the case of non-compact finite area surfaces
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3625
LA  - en
ID  - AIF_0__0_0_A90_0
ER  - 
%0 Unpublished Work
%A Trin, Marie
%T Thurston’s compactification via geodesic currents: the case of non-compact finite area surfaces
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3625
%G en
%F AIF_0__0_0_A90_0
Trin, Marie. Thurston’s compactification via geodesic currents: the case of non-compact finite area surfaces. Annales de l'Institut Fourier, Online first, 22 p.

[1] Aramayona, Javier; Leininger, Christopher J. Hyperbolic structures on surfaces and geodesic currents, Algorithmic and geometric topics around free groups and automorphisms (Advanced Courses in Mathematics – CRM Barcelona), Birkhäuser/Springer, 2017, pp. 111-149 | DOI | MR | Zbl

[2] Basmajian, Ara; Parlier, Hugo; Tan, Ser Prime orthogeodesics, concave cores and families of identities on hyperbolic surfaces (2020) (https://arxiv.org/abs/2006.04872)

[3] Bestvina, Mladen -trees in topology, geometry, and group theory, Handbook of geometric topology (Daverman, R. J.; Sher, R. B., eds.), Elsevier, 2001, pp. 55-91 | DOI | MR | Zbl

[4] Bonahon, Francis Bouts des variétés hyperboliques de dimension 3, Ann. Math., Volume 124 (1986) no. 1, pp. 71-158 | DOI | MR | Zbl

[5] Bonahon, Francis The geometry of Teichmüller space via geodesic currents, Invent. Math., Volume 92 (1988) no. 1, pp. 139-162 | DOI | MR | Zbl

[6] Bonahon, Francis; Šarić, Dragomir A Thurston boundary for infinite-dimensional Teichmüller spaces, Math. Ann., Volume 380 (2021) no. 3-4, pp. 1119-1167 | DOI | MR | Zbl

[7] Duchin, Moon; Leininger, Christopher J.; Rafi, Kasra Length spectra and degeneration of flat metrics, Invent. Math., Volume 182 (2010) no. 2, pp. 231-277 | DOI | MR | Zbl

[8] Erlandsson, Viveka; Souto, Juan Mirzakhani’s curve counting and geodesic currents, Progress in Mathematics, 345, Birkhäuser/Springer, 2022, xii+226 pages | DOI | MR | Zbl

[9] Fathi, Albert; Laudenbach, François; Poénaru, Valentin Travaux de Thurston sur les surfaces. Séminaire Orsay, Astérisque, 66, Société Mathématique de France, 1979, 284 pages | MR

[10] Haas, Andrew Geodesic cusp excursions and metric Diophantine approximation, Math. Res. Lett., Volume 16 (2009) no. 1, pp. 67-85 | DOI | MR | Zbl

[11] Lalley, Steven P. Distribution of periodic orbits of symbolic and Axiom A flows, Adv. Appl. Math., Volume 8 (1987) no. 2, pp. 154-193 | DOI | MR | Zbl

[12] Lalley, Steven P. Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math., Volume 163 (1989) no. 1-2, pp. 1-55 | DOI | MR | Zbl

[13] Morgan, John W.; Shalen, Peter B. Valuations, trees, and degenerations of hyperbolic structures. I, Ann. Math., Volume 120 (1984) no. 3, pp. 401-476 | DOI | MR | Zbl

[14] Ohshika, Ken’ichi Compactifications of Teichmüller spaces, Handbook of Teichmüller theory. Vol. IV (IRMA Lectures in Mathematics and Theoretical Physics), Volume 19, European Mathematical Society, 2014, pp. 235-254 | DOI | MR | Zbl

[15] Paulin, Frédéric Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math., Volume 94 (1988) no. 1, pp. 53-80 | DOI | MR | Zbl

[16] Paulin, Frédéric Sur la compactification de Thurston de l’espace de Teichmüller, Géométries à courbure négative ou nulle, groupes discrets et rigidités (Séminaires et Congrès), Volume 18, Société Mathématique de France, 2009, pp. 421-443 | MR | Zbl

[17] Pollicott, Mark Limiting distributions for geodesics excursions on the modular surface, Spectral analysis in geometry and number theory (Contemporary Mathematics), Volume 484, American Mathematical Society, 2009, pp. 177-185 | DOI | MR | Zbl

[18] Sasaki, Dounnu Currents on cusped hyperbolic surfaces and denseness property, Groups Geom. Dyn., Volume 16 (2022) no. 3, pp. 1077-1117 | DOI | MR | Zbl

[19] Souto, Juan; Thi Hanh Vo Deciding when two curves are of the same type (2020) (https://arxiv.org/abs/2012.09792)

[20] Sullivan, Dennis Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math., Volume 149 (1982) no. 3-4, pp. 215-237 | DOI | MR | Zbl

[21] Thurston, William P. On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Am. Math. Soc., Volume 19 (1988) no. 2, pp. 417-431 | DOI | MR | Zbl

[22] Trin, Marie Counting arcs of the same type (2023) (https://arxiv.org/abs/2306.07573)

Cited by Sources: