In 1988, Bonahon gave a construction of Thurston’s compactification of Teichmüller space using geodesic currents. His argument only applies in the case of closed surfaces, and there are good reasons for that. We present a variant which applies to surfaces of finite area and to do so we prove a control theorem for sequences of random geodesics. Note that this theorem may be of independant interest, especially when the surface is non-compact.
En 1988, Bonahon a donné une preuve de la compactification de Thurston de l’espace de Teichmüller utilisant les courants géodésiques. Pour des raisons bien précises, cette preuve ne s’applique que dans le cas des surfaces fermées. On présente ici une variante des arguments de Bonahon qui s’applique aux surfaces d’aire finie grâce à un théorème de contrôle sur les suites de géodésiques aléatoires. Notons que ce théorème a son propre intérêt notamment lorsque la surface n’est pas compacte.
Revised:
Accepted:
Online First:
Keywords: Teichmüller space, Thurston’s compactification, Geodesic currents, Sequences of random geodesics.
Mot clés : Espace de Teichmüller, compactification de Thurston, courants géodésiques, suites de géodésiques aléatoires.
@unpublished{AIF_0__0_0_A90_0, author = {Trin, Marie}, title = {Thurston{\textquoteright}s compactification via geodesic currents: the case of non-compact finite area surfaces}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3625}, language = {en}, note = {Online first}, }
Trin, Marie. Thurston’s compactification via geodesic currents: the case of non-compact finite area surfaces. Annales de l'Institut Fourier, Online first, 22 p.
[1] Hyperbolic structures on surfaces and geodesic currents, Algorithmic and geometric topics around free groups and automorphisms (Advanced Courses in Mathematics – CRM Barcelona), Birkhäuser/Springer, 2017, pp. 111-149 | DOI | MR | Zbl
[2] Prime orthogeodesics, concave cores and families of identities on hyperbolic surfaces (2020) (https://arxiv.org/abs/2006.04872)
[3] -trees in topology, geometry, and group theory, Handbook of geometric topology (Daverman, R. J.; Sher, R. B., eds.), Elsevier, 2001, pp. 55-91 | DOI | MR | Zbl
[4] Bouts des variétés hyperboliques de dimension , Ann. Math., Volume 124 (1986) no. 1, pp. 71-158 | DOI | MR | Zbl
[5] The geometry of Teichmüller space via geodesic currents, Invent. Math., Volume 92 (1988) no. 1, pp. 139-162 | DOI | MR | Zbl
[6] A Thurston boundary for infinite-dimensional Teichmüller spaces, Math. Ann., Volume 380 (2021) no. 3-4, pp. 1119-1167 | DOI | MR | Zbl
[7] Length spectra and degeneration of flat metrics, Invent. Math., Volume 182 (2010) no. 2, pp. 231-277 | DOI | MR | Zbl
[8] Mirzakhani’s curve counting and geodesic currents, Progress in Mathematics, 345, Birkhäuser/Springer, 2022, xii+226 pages | DOI | MR | Zbl
[9] Travaux de Thurston sur les surfaces. Séminaire Orsay, Astérisque, 66, Société Mathématique de France, 1979, 284 pages | MR
[10] Geodesic cusp excursions and metric Diophantine approximation, Math. Res. Lett., Volume 16 (2009) no. 1, pp. 67-85 | DOI | MR | Zbl
[11] Distribution of periodic orbits of symbolic and Axiom A flows, Adv. Appl. Math., Volume 8 (1987) no. 2, pp. 154-193 | DOI | MR | Zbl
[12] Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math., Volume 163 (1989) no. 1-2, pp. 1-55 | DOI | MR | Zbl
[13] Valuations, trees, and degenerations of hyperbolic structures. I, Ann. Math., Volume 120 (1984) no. 3, pp. 401-476 | DOI | MR | Zbl
[14] Compactifications of Teichmüller spaces, Handbook of Teichmüller theory. Vol. IV (IRMA Lectures in Mathematics and Theoretical Physics), Volume 19, European Mathematical Society, 2014, pp. 235-254 | DOI | MR | Zbl
[15] Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math., Volume 94 (1988) no. 1, pp. 53-80 | DOI | MR | Zbl
[16] Sur la compactification de Thurston de l’espace de Teichmüller, Géométries à courbure négative ou nulle, groupes discrets et rigidités (Séminaires et Congrès), Volume 18, Société Mathématique de France, 2009, pp. 421-443 | MR | Zbl
[17] Limiting distributions for geodesics excursions on the modular surface, Spectral analysis in geometry and number theory (Contemporary Mathematics), Volume 484, American Mathematical Society, 2009, pp. 177-185 | DOI | MR | Zbl
[18] Currents on cusped hyperbolic surfaces and denseness property, Groups Geom. Dyn., Volume 16 (2022) no. 3, pp. 1077-1117 | DOI | MR | Zbl
[19] Deciding when two curves are of the same type (2020) (https://arxiv.org/abs/2012.09792)
[20] Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math., Volume 149 (1982) no. 3-4, pp. 215-237 | DOI | MR | Zbl
[21] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Am. Math. Soc., Volume 19 (1988) no. 2, pp. 417-431 | DOI | MR | Zbl
[22] Counting arcs of the same type (2023) (https://arxiv.org/abs/2306.07573)
Cited by Sources: