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INDUCED DIFFERENTIAL CHARACTERS ON
NONLINEAR GRASSMANNIANS

by Tobias DIEZ, Bas JANSSENS,
Karl-Hermann NEEB & Cornelia VIZMAN (*)

Abstract. — Using a nonlinear version of the tautological bundle over Graß-
mannians, we construct a transgression map for differential characters from M to
the nonlinear Graßmannian GrS(M) of submanifolds of M of a fixed type S. In
particular, we obtain prequantum circle bundles of the nonlinear Graßmannian
endowed with the Marsden–Weinstein symplectic form. The associated Kostant–
Souriau prequantum extension yields central Lie group extensions of a group of
volume-preserving diffeomorphisms integrating Lichnerowicz cocycles.

Résumé. — En utilisant une version non-linéaire du fibré tautologique sur les
Graßmanniennes, nous construisons une application de transgression pour les carac-
tères différentiels de M à la Graßmannienne non-linéaire GrS(M) des sous-variétés
de M d’un type fixé S. En particulier, nous obtenons des fibrés en cercles préquan-
tiques au dessus de la Graßmannienne non-linéaire doté de la forme symplectique de
Marsden–Weinstein. L’extension préquantique de Kostant–Souriau associée donne
des extensions centrales de groupes de Lie d’un groupe de difféomorphismes pré-
servant le volume et intégrant les cocycles de Lichnerowicz.

1. Introduction

The orbit method provides a powerful framework to construct irreducible
unitary representations of an arbitrary Lie group. In its simplest form, the
method proceeds in two stages: first, construct an equivariant prequan-
tum line bundle over certain coadjoint orbits and, second, pass to the
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space of sections that are covariantly constant relative to a chosen po-
larization. Although originally developed in a finite-dimensional setting,
the orbit method also has been successfully applied to infinite-dimensional
Lie groups [12, 20, 23]. In this paper, we are concerned with the construc-
tion of prequantum bundles on a certain class of coadjoint orbits of the
infinite-dimensional Lie group of volume-preserving diffeomorphisms.

Let (M,µ) be a compact manifold of dimension n ⩾ 2 endowed with a
volume form µ. In [9, 11], certain coadjoint orbits of the group of volume-
preserving diffeomorphisms Diff(M,µ) were described in terms of the non-
linear Graßmannian GrS(M) of all oriented submanifolds of M of type S,
where S is a compact manifold of dimension n−2. The tautological bundle
over this nonlinear Graßmannian is a nonlinear version of the tautological
vector bundle over the ordinary linear Graßmannian. It is defined by

T :=
{

(N, x) ∈ GrS(M) ×M : x ∈ N
}
,

with bundle projection q1 : T → GrS(M), q1(N, x) = N . We use the
tautological bundle to define a transgression of a differential character h ∈
Ĥn−1(M,T) to a differential character h̃ = (q1)!(q∗

2h) ∈ Ĥ1(GrS(M),T)
on the nonlinear Graßmannian, where (q1)! denotes integration along the
fibers of the tautological bundle and q2 : T → M is defined by q2(N, x) = x.

Differential characters were introduced by Cheeger and Simons [5], see
also [2] for a systematic exposition. Differential characters of degree one
classify principal circle bundles with connections through their holonomy
maps. The map that associates to a differential character its curvature form
is a surjective group homomorphism curv : Ĥk(M,T) → Ωk+1

Z (M) onto the
group of differential forms with integral periods. In this way, starting with
a volume form µ ∈ Ωn(M) that has integral periods, we get via trans-
gression a differential character of degree one on the nonlinear Graßman-
nian GrS(M). This yields an isomorphism class of principal circle bundles
P → GrS(M) equipped with a connection 1-form ΘP ∈ Ω1(P) whose cur-
vature is the Marsden–Weinstein symplectic form µ̃ induced by µ [19]. That
is, (P,ΘP) is a prequantization of (GrS(M), µ̃).

Theorem A. — Let M be a compact manifold of dimension n endowed
with a volume form µ having integral periods, and let S be a closed, oriented
manifold of dimension n − 2. For every choice of a differential character
h ∈ Ĥn−1(M,T) with curvature µ, the transgression h̃ ∈ Ĥ1(GrS(M),T)
of h yields an isomorphism class of prequantum bundles of the nonlinear
Graßmannian GrS(M) endowed with the Marsden–Weinstein symplectic
form µ̃.
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Note that a prequantum bundle over the nonlinear Graßmannian with
curvature µ̃ has been previously constructed in [3] and [9]. These construc-
tions yield a description of the prequantum bundle with connection in terms
of local data. An advantage of our approach is the additional control over
the holonomy; for a fixed volume form µ, the set of prequantum line bundles
obtained with our construction is naturally a torsor over Hn−1(M,T).

Associated to the volume form µ, there is a flux homomorphism
Fluxµ : Diff(M,µ)0 → Jn−1(M) taking values in the Jacobian torus. The
kernel Diffex(M,µ) of Fluxµ acts on the nonlinear Graßmannian while
preserving its connected components. We restrict the above constructed
prequantum bundle P → GrS(M) to the connected component GrSN (M)
of N ∈ GrS(M). Following ideas of Ismagilov [11], the pull-back of the
prequantum extension by the action of Diffex(M,µ) yields a central Lie
group extension of Diffex(M,µ) that integrates the Lichnerowicz cocycle
ψN (X,Y ) =

∫
N
iX iY µ on the Lie algebra Xex(M,µ) of exact divergence

free vector fields.

Theorem B. — Let M be a compact manifold of dimension n en-
dowed with a volume form µ having integral periods. For every closed,
oriented manifold S of dimension n − 2 and for every differential charac-
ter h ∈ Ĥn−1(M,T) with curvature µ, the 1-dimensional central exten-
sion D̂iffex(M,µ) of Diffex(M,µ) obtained by pull-back of the prequantum
extension (4.4) is a Fréchet–Lie group that integrates the Lichnerowicz
cocycle ψN .

Since Diffex(M,µ) acts transitively on connected components of GrS(M)
according to [9, Prop. 2], this shows that GrSN (M) is a coadjoint orbit of
D̂iffex(M,µ). A similar result for the identity component of Diffex(M,µ) is
obtained in [9, Thm. 2].

In [6] we have used transgression of differential characters from S and M
to get differential characters of degree one on the mapping space C∞(S,M).
The associated central extension of Diffex(M,µ) integrates the Lichnerow-
icz cocycle as well. In Section 4.3 we show that the two central extensions
of Diffex(M,µ) constructed using transgression on the connected compo-
nent of f of the embedding space Emb(S,M) on the one hand and of the
connected component of f(S) of the nonlinear Graßmannian GrS(M) on
the other hand are isomorphic as central extensions of Lie groups.

Notation. — We write T = {z ∈ C : |z| = 1} for the circle group
which we identify with R/Z. Accordingly, we write expT(t) = e2πit for its
exponential function.
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2. Differential characters

In order to keep the paper self-contained, we give a brief introduction to
differential characters, following [5] and [2]. The material in this section is
essentially an abridged version of [6, §2 and §3].

2.1. Basics on differential characters

In this section, M denotes a locally convex smooth manifold for which
the de Rham isomorphism holds(1) . Let Ck(M) be the group of smooth
singular k-chains, and let Zk(M) and Bk(M) denote the subgroups of k-
cycles and k-boundaries, so that Hk(M) := Zk(M)/Bk(M) is the k-th
smooth singular homology group.

A differential character (Cheeger–Simons character) of degree k is a
group homomorphism h : Zk(M) → T for which there exists a differen-
tial form ω ∈ Ωk+1(M) such that

h(∂z) = expT

(∫
z

ω

)
for all z ∈ Ck+1(M). Then ω is uniquely determined by h and is called the
curvature of h, denoted by curv(h). We write

Ĥk(M,T) ⊆ Hom(Zk(M),T)

for the group of differential characters(2) of degree k. The curvature ω =
curv(h) satisfies 1 = h(∂z) = expT(

∫
z
ω) for all z ∈ Zk+1(M), so it belongs

to the abelian group of forms with integral periods

Ωk+1
Z (M) :=

{
ω ∈ Ωk+1(M) :

∫
Zk+1(M)

ω ⊆ Z
}
.

(1) See [14, Thm. 34.7] for a de Rham Theorem in this context and sufficient criteria for
it to hold.
(2) In [2] this group is denoted Ĥk+1(M,Z). In this sense our notations are compatible,
although the degree is shifted by 1. Our convention follows the original one introduced
by Cheeger and Simons in [5].
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On the other hand, the identification Hk(M,T) ∼= Hom(Hk(M),T) yields a
natural inclusion j : Hk(M,T) → Ĥk(M,T), whose image is the subgroup
of differential characters with zero curvature. We get an exact sequence

(2.1) 0 // Hk(M,T)
j // Ĥk(M,T) curv // Ωk+1

Z (M) // 0.

Remark 2.1. — The holonomy map h(P,θ) of a principal circle bundle
P → M with connection form θ ∈ Ω1(P ) assigns to each piecewise smooth
1-cycle c ∈ Z1(M) an element h(P,θ)(c) in T. If the principal connection
has curvature ω ∈ Ω2(M), then h(P,θ)(∂z) = expT(

∫
z
ω) for all z ∈ C2(M),

so that h(P,θ) ∈ Ĥ1(M,T) is a differential character with curv(h(P,θ)) = ω.
The assignment (P, θ) 7→ h(P,θ) defines an isomorphism between the group
of isomorphism classes of pairs (P, θ) and the group Ĥ1(M,T) of differential
characters of degree 1. To see this, note that principal circle bundles with
connection are classified by Deligne cohomology [3, Thm. 2.2.12], which
is an alternative model for differential cohomology, cf. [2, Sec. 5.2]. For a
direct proof, see also [6, App. B].

2.2. Stabilizer groups and Lie algebras

For any manifold M , the action of the diffeomorphism group Diff(M)
from the right on Ĥk(M,T) by pull-back [2, Rk. 15],

(2.2) (φ∗h)(c) := h(φ ◦ c) for c ∈ Zk(M),

extends to the exact sequence (2.1) of abelian groups:

(2.3)

0 // Hk(M,T)

φ∗

��

j // Ĥk(M,T)

φ∗

��

curv // Ωk+1
Z (M)

φ∗

��

// 0

0 // Hk(M,T)
j // Ĥk(M,T) curv // Ωk+1

Z (M) // 0.

We denote the stabilizer group of the curvature form ω ∈ Ωk+1
Z (M) by

Diff(M,ω) := {φ ∈ Diff(M) : φ∗ω = ω}.

The stabilizer group of a differential character h ∈ Ĥk(M,T),

Diff(M,h) := {φ ∈ Diff(M) : φ∗h = h} ,

is a subgroup of Diff(M,ω) for ω = curv(h), by (2.3). If Hk(M) = {0},
then Hk(M,T) is trivial, and thus Diff(M,h) = Diff(M,ω).

TOME 74 (2024), FASCICULE 6
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Remark 2.2. — Let h(P,θ) ∈ Ĥ1(M,T) be the differential character de-
fined by the holonomy of the principal T-bundle P → M with connection θ
as in Remark 2.1. Then φ ∈ Diff(M,h(P,θ)) if and only if, for every smooth
loop c in M , the holonomy of c coincides with the holonomy of φ ◦ c. Since
this is equivalent to the existence of a lift to a connection-preserving auto-
morphism φ̃ ∈ Aut(P, θ) by [22, Thm. 2.7], one can view Diff(M,h(P,θ)) as
the group of liftable diffeomorphisms, cf. [13, 26].

Although Diff(M,ω) need not be a locally convex Lie group, we can still
define its Lie algebra as follows.

Definition 2.3. — We call a curve (φt)t∈[0,1] in Diff(M) smooth if
the map [0, 1] × M → M × M : (t, x) 7→ (φt(x), φ−1

t (x)) is smooth. For
a subgroup G ⊆ Diff(M), we denote by G0 the group of diffeomorphisms
that are connected to the identity by a piecewise smooth path in G. We
denote by δlφ the left logarithmic derivative

(2.4) δlφt(x) := d
dτ

∣∣∣
t
φ−1
t

(
φτ (x)

)
,

yielding a curve of vector fields on M . Then a Lie subalgebra g ⊆ X(M)
is the Lie algebra of G ⊆ Diff(M) if for every smooth curve (φt)t∈[0,1] in
Diff(M) with φ0 = idM , the curve (φt)t∈[0,1] is contained in G if and only
if its logarithmic derivative (δlφt)t∈[0,1] is a curve in g.

In this sense, the Lie algebra of Diff(M,ω) is the stabilizer Lie algebra

X(M,ω) :=
{
X ∈ X(M) : LXω = 0

}
.

2.3. Flux homomorphism

The isotropy group Diff(M,h) is the kernel of the flux cocycle

(2.5) Fluxh : Diff(M,ω) → Hk(M,T), Fluxh(φ) = φ∗h− h.

The restriction of Fluxh to the identity component Diff(M,ω)0 takes values
in the Jacobian torus Jk(M) ∼= Hom(Hk(M),R)/Hom(Hk(M),Z):

(2.6)

Diff(M,ω)0

ι

��

Fluxω // Jk(M)

expT

��
Diff(M,ω) Fluxh // Hk(M,T).

ANNALES DE L’INSTITUT FOURIER
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We denote this restriction by Fluxω, since it depends only on ω = curv(h).
Indeed, we can express Fluxω as

(2.7) Fluxω(φ) =
[∫ 1

0
iδlφt

ω dt
]
,

where (φt)t∈[0,1] is any smooth curve in Diff(M,ω) with φ0 = idM and
φ1 = φ [1, 4]. To see that the expression in (2.7) is indeed the restriction
of Fluxh, note that for all c ∈ Zk(M),

expT Fluxω(φ)(c) = expT

(∫
c

∫ 1

0
iδlφt

ω dt
)

= expT

(∫
σ

ω

)
= h(∂σ)

= h(φ ◦ c) − h(c) = (φ∗h− h)(c) = Fluxh(φ)(c),

where σ is the (k + 1)-chain swept out by the k-cycle c under the path of
diffeomorphisms {φt}. The kernel of Fluxω is the group

(2.8) Diffex(M,ω) := Diff(M,h) ∩ Diff(M,ω)0,

which is independent of the choice of h with curv(h) = ω. The groups
Diff(M,h) and Diffex(M,ω) have the same Lie algebra

Xex(M,ω) :=
{
X ∈ X(M,ω) : iXω is exact

}
.

Example 2.4. — If M is compact and ω ∈ Ωk+1
Z (M), then the following

special cases are of particular importance:
(1) For k = 1 and ω a symplectic form, Xex(M,ω) is the Lie algebra

Xham(M,ω) of Hamiltonian vector fields and Diffex(M,ω)0 is the
group Diffham(M,ω) of Hamiltonian diffeomorphisms.

(2) For k = n − 1 and ω = µ a volume form, we get the Lie alge-
bra Xex(M,µ) of exact divergence free vector fields and the group
Diffex(M,µ)0 of exact volume-preserving diffeomorphisms.

The corresponding groups Diffham(M,ω) and Diffex(M,µ)0 are Fréchet–
Lie groups [14, Thm. 43.7, 43.12]. In both cases mentioned above, the same
holds for the possibly non-connected groups Diff(M,h) and Diffex(M,ω)
with curv(h) = ω for h ∈ Ĥk(M,T), cf. [6, Prop. 3.8].

3. Tautological bundle over nonlinear Graßmannians

3.1. Transgression of differential forms

Let M be a finite dimensional manifold, and let S be a compact oriented
k–dimensional manifold. The nonlinear Graßmannian GrS(M) of all com-
pact, oriented, k–dimensional submanifolds of M of type S is a Fréchet

TOME 74 (2024), FASCICULE 6
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manifold, cf. [14, Thm. 44.1]. The tangent space of GrS(M) at a subman-
ifold N can be identified with the space of smooth sections of the normal
bundle TN⊥ = (TM |N )/TN . The natural surjection

(3.1) π : Emb(S,M) → GrS(M), π(f) = f(S),

where the orientation on the submanifold f(S) is chosen such that the
diffeomorphism f : S → f(S) is orientation-preserving, defines a principal
bundle Emb(S,M) → GrS(M) with structure group Diff+(S), the group
of orientation-preserving diffeomorphisms of S, cf. [14, Thm. 44.1].

The transgression, or tilda map, [9] associates to any n–form ω on M an
(n− k)–form ω̃ on GrS(M) by

(3.2) ω̃N (Ỹ 1, . . . , Ỹ n−k) :=
∫
N

ι∗N (iYn−k
· · · iY1ω),

where ιN : N ↪→ M is the inclusion. Here Ỹ j are tangent vectors at
N ∈ GrS(M), i.e. sections of TN⊥, represented by sections Yj of TM |N .
Moreover, ι∗N (iYn−k

· · · iY1ω) ∈ Ωk(N) is defined by

(3.3)
(
ι∗N (iYn−k

· · · iY1ω)
)
x
(X1, . . . , Xk)

= ωιN (x)
(
Y1(x), . . . , Yn−k(x),TxιN (X1), . . . ,TxιN (Xk)

)
for x ∈ N and Xi ∈ TxN , so it does not depend on the representatives Yj
of Ỹ j . Finally, integration in (3.2) is well defined since N ∈ GrS(M) comes
with an orientation.

The natural action of the group Diff(M) on the nonlinear Graßmannian
GrS(M) is given by φ · N = φ(N). With the notations φ̃ for the diffeo-
morphism of GrS(M) induced by the action of φ ∈ Diff(M) on GrS(M),
and X̃ for the infinitesimal action of X ∈ X(M), the following functorial
identities hold:

(3.4) φ̃∗ω̃ = φ̃∗ω, L
X̃
ω̃ = L̃Xω, i

X̃
ω̃ = ĩXω, dω̃ = d̃ω.

Similarly, S being oriented, the hat map [29] associates to any form
ω ∈ Ωn(M) the form ω̂ ∈ Ωn−k(Emb(S,M)) defined by

(3.5) ω̂(Z1, . . . , Zn−k) :=
∫
S

f∗(iZn−k
. . . iZ1ω),

with Zj ∈ Tf Emb(S,M) = Γ(f∗TM). It is easy to check that the hat map
on Emb(S,M) and the tilda map on GrS(M) are related by

(3.6) ω̂ = π∗ω̃

for every ω ∈ Ωn(M).

ANNALES DE L’INSTITUT FOURIER
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3.2. Tautological bundle

A nonlinear version of the tautological bundle over the usual Graßman-
nian is the associated bundle T = Emb(S,M)×Diff+(S)S over the nonlinear
Graßmannian GrS(M), a smooth bundle with typical fiber S. The tauto-
logical bundle can also be expressed as

T =
{

(N, x) ∈ GrS(M) ×M : x ∈ N
}
,

with bundle projection q1 : T → GrS(M), q1(N, x) = N . From this point
of view, the quotient map Π : Emb(S,M)×S → T , an S-bundle morphism
over π : Emb(S,M) → GrS(M), becomes Π(f, s) =

(
f(S), f(s)

)
, and the

projection q2 : T → M defined by q2(N, x) = x satisfies q2 ◦ Π = ev. Thus,
the following diagrams commute:

(3.7)

Emb(S,M) × S

p1

��

Π // T

q1

��
Emb(S,M) π // GrS(M),

Emb(S,M) × S

ev
&&

Π // T

q2

��
M.

The transgression (3.2) of a differential form ω ∈ Ωn(M) to the nonlinear
Graßmannian GrS(M) can be expressed with the help of the tautological
bundle over the nonlinear Graßmannian as

(3.8) ω̃ = (q1)!(q∗
2ω) ∈ Ωn−k(GrS(M)),

where (q1)! denotes integration along the fibers of the tautological bundle
q1 : T → GrS(M). Indeed, since π is a submersion, this relation follows
from

π∗(
(q1)!(q∗

2ω)
)

= (p1)!(Π∗q∗
2ω) (3.7)= (p1)!(ev∗ ω) = ω̂

(3.6)= π∗ω̃,

using that fiber integration commutes with pull-back [8].
In a similar spirit, tautological bundles over manifolds of nonlinear flags

in M , i.e. nested sets of submanifolds of M , have been used in [10] to
handle the transgression of differential forms on M to differential forms on
the manifold of nonlinear flags.

3.3. Transgression of differential characters

The pull-back and the fiber integration make sense also for differential
characters [2, Ch. 7]. This allows us to define the transgression of a differen-
tial character h ∈ Ĥn−1(M,T) to the nonlinear Graßmannian GrS(M) with

TOME 74 (2024), FASCICULE 6
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the help of the tautological bundle T , in the same way as in formula (3.8):

(3.9) h̃ = (q1)!(q∗
2h) ∈ Ĥn−k−1(GrS(M),T).

The transgression map for differential characters

(3.10) Ĥn−1(M,T) −→ Ĥn−k−1(GrS(M),T)

has functorial properties that we describe below.

Proposition 3.1. — The transgression map for differential characters
in (3.10) makes the following diagram commutative:

Hn−1(M,T)

˜
��

j // Ĥn−1(M,T)

˜
��

curv // ΩnZ(M)

˜
��

Hn−k−1(GrS(M),T)
j // Ĥn−k−1(GrS(M),T) curv // Ωn−k

Z (GrS(M)),

where the transgression ã ∈ Hn−k−1(GrS(M),T) of a ∈ Hn−1(M,T) is
defined by ã = (q1)!(q∗

2a). In particular, curv(h̃) = ˜curv(h).

Proof. — Using the compatibility of both the pull-back and the fiber
integration of differential characters with the curvature explained in [2,
Rk. 15, Def. 38], we compute

curv(h̃) = curv
(
(q1)!(q∗

2h)
)

= (q1)! curv(q∗
2h) = (q1)!q

∗
2 curv(h) = ˜curv(h).

This shows the commutativity of the right-hand side of the diagram.
To prove the commutativity of the left-hand side, we use [2, Prop. 48]:

j̃(a) = (q1)!
(
q∗

2j(a)
)

= (q1)!
(
j(q∗

2a)
)

= j
(
(q1)!(q∗

2a)
)

= j(ã),

for all a ∈ Hn−1(M,T). □

Corollary 3.2. — The transgression map Ωn(M) → Ωn−k(GrS(M)),
ω 7→ ω̃, preserves the integrality of differential forms.

Proof. — Every integral form ω ∈ ΩnZ(M) is the curvature of a character
h ∈ Ĥn−1(M,T). By Proposition 3.1, its transgression ω̃ ∈ Ωn−k(GrS(M))
is the curvature of the transgressed character h̃ ∈ Ĥn−k−1(GrS(M),T),
hence an integral form. □

Consider the natural action of Diff(M) on T defined by assigning to
every diffeomorphism φ ∈ Diff(M) the diffeomorphism φT : T → T given

ANNALES DE L’INSTITUT FOURIER
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by φT (N, x) =
(
φ(N), φ(x)

)
. The following diagram commutes:

(3.11)

GrS(M)

φ̃
��

T
q1oo

φT

��

q2 // M

φ

��
GrS(M) T

q1oo q2 // M.

Proposition 3.3. — The transgression map for differential characters
defined in (3.10) is compatible with the action of Diff(M), that is, φ̃∗h =
φ̃∗h̃ holds for every h ∈ Ĥn−1(M,T) and φ ∈ Diff(M).

Proof. — The claim follows from the direct calculation

φ̃∗h = (q1)!(q∗
2φ

∗h) = (q1)!(φ∗
T q

∗
2h) = φ̃∗(

(q1)!(q∗
2h)

)
= φ̃∗h̃,

by [2, Def. 38] and (3.11). □

The case of a volume form ω ∈ Ωn(M) and k = n − 2, with ω̃ ∈
Ω2(GrS(M)), has been considered in [9, Thm. 1], where a principal circle
bundle (P, θ) over GrS(M) with curvature ω̃ has been constructed through
its Čech 1-cocycle. In our setting, we get such a prequantum bundle over
GrS(M) using the transgression h̃ ∈ Ĥ1(GrS(M),T) of a differential char-
acter h ∈ Ĥn−1(M,T) with curvature ω(3) . This is described in the next
theorem, a direct consequence of Proposition 3.1 and Remark 2.1.

Theorem C. — Let M be a compact manifold of dimension n endowed
with a volume form µ having integral periods, and let S be a closed, oriented
manifold of dimension n − 2. For every choice of a differential character
h ∈ Ĥn−1(M,T) with curvature µ, the transgression h̃ ∈ Ĥ1(GrS(M),T)
of h yields an isomorphism class of prequantum bundles of the nonlinear
Graßmannian GrS(M) endowed with the Marsden–Weinstein symplectic
form µ̃.

A hat product of differential characters has been introduced in [6, §4]
yielding the transgression of a pair of differential characters from S and
from M to a differential character on C∞(S,M). We specialize it here to
a hat map that assigns to every h ∈ Ĥn−1(M,T) the differential character

(3.12) ĥ := (p1)!(ev∗ h) ∈ Ĥn−k−1(Emb(S,M),T),

where p1 : Emb(S,M) × S → Emb(S,M) is the natural projection.

(3) We do not know whether the holonomy h(P,θ) ∈ Ĥ1(GrS(M),T) of the principal
bundle constructed in [9] coincides with the transgression of a differential character
h ∈ Ĥn−1(M,T). The differential character h(P,θ) may differ from h̃ ∈ Ĥ1(GrS(M),T)
by an element in H1(GrS(M),T).
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Proposition 3.4. — Given a differential character h on M , the differ-
ential character ĥ on Emb(S,M) is Diff+(S) invariant and coincides with
the pull-back π∗h̃ of the differential character h̃ on GrS(M) under the map
π : Emb(S,M) → GrS(M) from (3.1).

Proof. — By (3.7), the transgression diagrams for Emb(S,M) and for
GrS(M) are connected by the projection π : Emb(S,M) → GrS(M), yield-
ing the commutative diagram

Emb(S,M) × S

p1

��

Π // //

ev
''

T
q1

q2

%%
M

��

M

Emb(S,M) π // // GrS(M).

Accordingly, we have

(3.13) π∗h̃ = π∗(q1)!(q∗
2h) = (p1)!(Π∗q∗

2h) = (p1)!(ev∗ h) = ĥ,

where we used the naturality of fiber integration [2, Def. 38]. □

Note that the Diff+(S)-invariance of the differential character ĥ is not
enough to conclude that ĥ descends to a differential character h̃ on GrS(M).
In fact, we are not aware of a direct proof that ĥ descends without using
transgression to GrS(M) as defined in (3.10). Even for differential forms,
invariance is not enough to conclude that they descend to the base (they
have to be basic!).

4. Integration of Lichnerowicz cocycles

Let M be a closed, connected manifold of dimension n ⩾ 2, and let µ ∈
ΩnZ(M) be an integral volume form. Then each oriented codimension two
submanifold N ⊂ M determines a 2-cocycle on the Lie algebra Xex(M,µ)
of exact divergence free vector fields by

(4.1) ψN (X,Y ) :=
∫
N

iX iY µ.

If [η] ∈ H2
dR(M) is Poincaré dual to [N ] ∈ Hn−2(M), then (4.1) is co-

homologous to the Lichnerowicz cocycle [18] ψη(X,Y ) :=
∫
M
η(X,Y )µ,

cf. [28].
In [6], we used transgression of differential characters over mapping

spaces to integrate these Lie algebra cocycles to smooth central extensions
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of the Lie group Diffex(M,µ). In this section, we apply ideas from [9, 11] to
show that the same can be done using transgression over nonlinear Graß-
mannians, and we indicate the relation between these two methods.

4.1. Construction using the nonlinear Graßmannian GrS(M)

First we turn to the use of transgression over nonlinear Graßmanni-
ans. Here S is a closed, oriented manifold of dimension n − 2. Let h ∈
Ĥn−1(M,T) be a differential character on M with curvature the integral
volume form µ, i.e. a group homomorphism h : Zn−1(M) → T that assigns
to each boundary its enclosed volume modulo Z. Using the transgression
diagram

(4.2)
T

q1

xx
q2

##
GrS(M) M,

we saw that h yields h̃ := (q1)!(q∗
2h) in Ĥ1(GrS(M),T), a differential char-

acter with curvature µ̃ := (q1)!(q∗
2µ) in Ω2

Z(GrS(M)). Since differential
characters of degree 1 correspond to isomorphism classes of principal circle
bundles with connection (see Remark 2.1), this yields an isomorphism class
of principal circle bundles P → GrS(M) equipped with a connection 1-form
ΘP ∈ Ω1(P) whose curvature is µ̃. In fact, the closed 2-form µ̃ is symplec-
tic [9, 11, 19], so that P → GrS(M) is a prequantum circle bundle. As any
two differential characters h and h′ with curvature µ differ by an element of
Hn−1(M,T), we obtain a distinguished class of “transgressed” prequantum
bundles of (GrS(M), µ̃), forming a torsor over Hn−1(M,T).

Let GrSN (M) be the connected component of N ∈ GrS(M) and let
PN denote the restriction of P to GrSN (M). The quantomorphism group
Aut

(
PN ,ΘP

)
is then a central extension

(4.3) T → Aut
(
PN ,ΘP

)
→ Diff

(
GrSN (M), h̃

)
of the group Diff

(
GrSN (M), h̃

)
of holonomy-preserving diffeomorphisms by

the circle group T, cf. [13, 26], and [22] for the infinite-dimensional case.
The group Diffex(M,µ) in Example 2.4 (with identity component the

group of exact volume-preserving diffeomorphisms) might be non-con-
nected. Being a subgroup of Diff(M,µ)0, by continuity, the natural action
σ of Diffex(M,µ) ⊆ Diff(M)0 leaves the connected component GrSN (M) in-
variant. Moreover, Proposition 3.3 implies that Diffex(M,µ) ⊆ Diff(M,h)
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preserves h̃. Thus, a central group extension of Diffex(M,µ) can be ob-
tained by pull-back of the prequantization central extension (4.3) by the
action σ,

(4.4)

1 // T // Aut
(
PN ,ΘP

)
// Diff

(
GrSN (M), h̃

)
// 1

1 // T

OO

// D̂iffex(M,µ)

OO

// Diffex(M,µ)

σ

OO

// 1.

The group Aut
(
PN ,ΘP

)
need not be a locally convex Lie group. But it fol-

lows from the generalization of [22, Thm. 3.4] to non-connected Lie groups
given in [6, Thm. A.1] that the pull-back D̂iffex(M,µ) is a Lie group, with
the manifold structure coming from the pull-back of PN → GrSN (M) along
the orbit map Diffex(M,µ) → GrSN (M), cf. [9, Rk. 4].

Although (4.3) is not a central extension of locally convex Lie groups,
its Lie algebra extension in the sense of Definition 2.3 is the one with the
Kostant–Souriau cocycle

ψKS(Ỹ1, Ỹ2) = µ̃N (Ỹ1, Ỹ2), Ỹ1, Ỹ2 ∈ TN GrSN (M) = Γ(TN⊥).

The central Lie algebra extension corresponding to the Lie group extension
D̂iffex(M,µ) → Diffex(M,µ) in (4.4) is the pull-back along the infinitesimal
action σ∗ : Xex(M,µ) → X(GrSN (M), µ̃), X 7→ X̃ of the Kostant–Souriau
cocycle,

ψKS(σ∗X,σ∗Y ) = µ̃N (X̃, Ỹ ) (3.4)= ĩY iXµ(N) (3.2)=
∫
N

iY iXµ
(4.1)= ψN (X,Y ).

It follows that T → D̂iffex(M,µ) → Diffex(M,µ) is a central extension
of Fréchet–Lie groups integrating the Lichnerowicz cocycle ψN defined
in (4.1). We have thus proven the following result:

Theorem D. — Let M be a compact manifold of dimension n en-
dowed with a volume form µ having integral periods. For every closed,
oriented manifold S of dimension n − 2 and for every differential charac-
ter h ∈ Ĥn−1(M,T) with curvature µ, the 1-dimensional central exten-
sion D̂iffex(M,µ) of Diffex(M,µ) obtained by pull-back of the prequantum
extension (4.4) is a Fréchet–Lie group that integrates the Lichnerowicz
cocycle ψN .

Remark 4.1. — In [9, 11] another approach to integrate the Lichnerow-
icz cocycle ψN to smooth central extensions of the group of exact volume-
preserving diffeomorphisms, i.e. the identity component of Diffex(M,µ),
is presented. We do not know whether these extensions coincide with the
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extensions given in Theorem B. The construction in [9] also uses a prequan-
tum bundle over GrS(M), which is constructed by hand in a rather complex
process through its Čech 1-cocycle. The main novelty of the present work
is the use of differential characters to obtain the prequantum bundle over
GrS(M) that is needed for the construction of the smooth central extension
D̂iffex(M,µ).

4.2. Construction using the embedding space Emb(S,M)

In [6], we constructed a central extension of Diffex(M,µ) using trans-
gression to the mapping space C∞(S,M), where S is a closed, oriented
manifold of dimension n − 2. We now briefly recall the construction in [6]
and adapt it to the case of embeddings. Using the transgression diagram

(4.5)
Emb(S,M) × S

ev %%p1vv
Emb(S,M) M,

a differential character h ∈ Ĥk−1(M,T) with curvature µ transgresses to
the differential character ĥ := (p1)!(ev∗ h) in Ĥ1(Emb(S,M),T), with cur-
vature µ̂ := (p1)!(ev∗ µ) in Ω2

Z(Emb(S,M)), see Section 3.3. This yields a
principal T-bundle Q → Emb(S,M) with connection ΘQ and curvature µ̂.

For a smooth embedding f : S → M , let Embf (S,M) be the connected
component of f in Emb(S,M) and let Qf denote the restriction of Q
to Embf (S,M). The group of connection-preserving automorphisms of
Qf → Embf (S,M) is a central extension of the group of ĥ-preserving
diffeomorphisms of Embf (S,M). If we pull this back along the action
σ : Diffex(M,µ) → Diff(Embf (S,M), ĥ) of Diffex(M,µ) on Embf (S,M),
we obtain a central extension D̂iff ′

ex(M,µ) of Diffex(M,µ) by T,

1 // T // Aut(Qf ,ΘQ) // Diff(Emb(S,M), ĥ) // 1

1 // T //

OO

D̂iff ′

ex(M,µ)

OO

// Diffex(M,µ)

σ

OO

// 1.

The group D̂iff ′
ex(M,µ) is a Fréchet–Lie group, and the Lie algebra 2-

cocycle corresponding to this central extension is the Lichnerowicz cocy-
cle (4.1) with N = f(S) by [6, Thm. 5.4].
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4.3. Comparison

Since the corresponding Lie algebra cocycles coincide, the two central
extensions D̂iffex(M,µ) and D̂iff ′

ex(M,µ) constructed using transgression,
respectively, on the nonlinear Graßmannian GrSN (M) and on the embedding
space Embf (S,M), are isomorphic on the infinitesimal level if f(S) = N .
To show that they are isomorphic also as central extensions of Lie groups,
we will use the following general result.

Lemma 4.2. — Assume that a Lie group G acts on the connected man-
ifolds M and N . Let P → M be a principal T-bundle with connection θ

whose holonomy is G-invariant. For a G-equivariant map ψ : N → M ,
let Ĝ be the central extension of G obtained from the bundle (P, θ) and
let Ĝψ the one obtained from the pull-back bundle (ψ∗P,ψ∗θ). For every
ϕ ∈ Aut(P, θ) covering the action of some g ∈ G, the map

(4.6) ϕ : ψ∗P → ψ∗P, (n, p) 7→
(
g · n, ϕ(p)

)
is a bundle automorphism of ψ∗P which preserves the pull-back connec-
tion ψ∗θ and covers the action of g ∈ G on N . The resulting Lie group
homomorphism Ĝ ∋ ϕ 7→ ϕ ∈ Ĝψ yields a smooth isomorphism of central
extensions.

Proof. — Let ϕ ∈ Aut(P, θ) covering the action of g ∈ G. By the G-
equivariance of ψ, the prescription (4.6) indeed defines a smooth bundle
map ϕ : ψ∗P → ψ∗P that covers the action of g on N by construction. It
is straightforward to see that ϕ is a bundle automorphism preserving the
connection ψ∗θ, as ϕ ∈ Aut(P, θ). Clearly, Ĝ ∋ ϕ 7→ ϕ ∈ Ĝψ is a group
homomorphism fitting into the commutative diagram

(4.7)

1 // T // Ĝψ // G // 1

1 // T //

id

OO

Ĝ

OO

// G

id

OO

// 1

and it thus yields an isomorphism of central extensions [21, Def. V.1.1]. □

Corollary 4.3. — Assume that a Lie group G acts on the connected
manifolds M and N . Let hM ∈ Ĥ1(M,T) and hN ∈ Ĥ1(N,T) be G-
invariant differential characters. If there exists a G-equivariant map ψ :
N → M such that ψ∗hM = hN , then the central extensions of G obtained
from hM and from hN are isomorphic.
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Let us return to the main objective of comparing the central extensions
D̂iffex(M,µ) and D̂iff ′

ex(M,µ) constructed using transgression on the non-
linear Graßmannian GrSN (M) and on the embedding space Embf (S,M).
Here and in the following, f and N are related via f(S) = N . For h ∈
Ĥn−1(M,T), the transgressed differential characters ĥ∈Ĥ1(Emb(S,M),T)
and h̃ ∈ Ĥ1(GrS(M),T) are related by ĥ = π∗h̃ according to Proposi-
tion 3.4. Since π is Diffex(M,µ)-equivariant, Corollary 4.3 yields the fol-
lowing comparison result.

Proposition 4.4. — Let M be a compact manifold of dimension n

endowed with a differential character h ∈ Ĥn−1(M,T) with curvature µ.
Let S be a closed, oriented manifold of dimension n − 2. For every em-
bedding f : S → M , the central extensions D̂iffex(M,µ) and D̂iff ′

ex(M,µ)
constructed using transgression to the nonlinear Graßmannian GrSf(S)(M)
and to the embedding space Embf (S,M) are smoothly isomorphic.

In particular, it follows that the extensions obtained from P → GrS(M)
over different connected components GrSN (M) and GrSN ′(M) are isomorphic
as soon asN andN ′ are the images of homotopic embeddings. Furthermore,
if a submanifold N ⊆ M is the image of an embedding f : S → M that is
homotopic to a “thin” map g : S → M (meaning that

∫
S
g∗α = 0 for all

α ∈ Ωn−2(M)), then the corresponding central extension D̂iffex(M,µ) is
trivial at the Lie algebra level.

Remark 4.5 (Comparison of the constructions). — As π : Emb(S,M) →
GrS(M) is surjective, every extension of Diffex(M,µ) that can be obtained
using the nonlinear Graßmannian can also be obtained starting from the
embedding space, showing that the two approaches are essentially equiv-
alent. An advantage of the construction using Graßmannians is that the
trangressed 2-form µ̃ on GrS(M) is not only closed, but also nondegener-
ate; in contrast to the principal circle bundle over Emb(S,M), the circle
bundle PN (with connection ΘP) over GrSN (M) (with symplectic form µ̃)
is thus a prequantum bundle. Under certain conditions, the Graßmannian
GrSN (M)+ of oriented embedded submanifolds admits a formally integrable
almost complex structure [3, 7, 16, 17, 27]. In future work, we hope to use
this almost complex structure in order to define a suitable polarization on
the associated prequantum line bundle L = PN ×TC, making the step from
prequantization to quantization.

Remark 4.6 (Construction based on C∞(S,M)). — In [6], we constructed
a central extension of Diffex(M,µ) using transgression to the mapping space
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C∞(S,M) instead of the embedding space Emb(S,M) as described in Sec-
tion 4.2. Clearly, the inclusion ι : Emb(S,M) → C∞(S,M) is Diffex(M,µ)-
equivariant and relates the transgressed characters ĥ ∈ Ĥ1(Emb(S,M),T)
and h ∈ Ĥ1(C∞(S,M),T) by ĥ = ι∗h. Thus, Corollary 4.3 implies that
the central extensions of Diffex(M,µ) obtained from (Embf (S,M), ĥ) and
from (C∞

f (S,M), h) are smoothly isomorphic for every embedding f ∈
Emb(S,M). However, there could be connected components of C∞(S,M)
that do not contain an embedding(4) , and such connected components
might give rise to central extensions of Diffex(M,µ) which are not accessible
via embedding spaces and nonlinear Graßmannians.

4.4. The special case H1(M,Z) = {0}

In this section we treat the special case when H1(M,Z) = {0}. The group
Diffex(M,µ)0 of exact volume-preserving diffeomorphisms then coincides
with the smooth arc-component of the identity of the group Diff(M,µ)
of volume-preserving diffeomorphisms. Indeed, Hn−1

dR (M) = {0}, since by
Poincaré duality Hn−1(M,Z) ∼= H1(M,Z) = {0}. Since Hn−1(M,T) =
{0}, it now follows from the exact sequence (2.1) that curv : Ĥn−1(M,T) →
ΩnZ(M) is an isomorphism. In particular, to any volume form µ with in-
tegral periods one can assign in a natural way a uniquely determined dif-
ferential character hµ ∈ Ĥn−1(M,T) with curvature µ. It is defined as
hµ(c) := expT(

∫
D
µ) for any c ∈ Zn−1(M) and D ∈ Cn(M) with ∂D = c.

Such smooth singular chains D exist because the smooth singular homol-
ogy group Hn−1(M) = 0, and the result is independent of the choice of D,
because µ is integral.

If H1(M,Z) = {0}, the diffeomorphism groups that preserve the volume
form µ and the holonomy hµ coincide: Diff(M,µ) = Diff(M,hµ) by the
right commutative diagram in (2.3). We thus have

Diffex(M,µ) (2.8)= Diff(M,µ)0 = Diffex(M,µ)0 = Diff(M,hµ)0.

We can therefore canonically associate to every homotopy class [f ] of an
embedding f : S → M the isomorphism class of a central Lie group exten-
sion

T → D̂iff(M,µ)0 → Diff(M,µ)0

with cocycle ψ(X,Y ) =
∫
S
f∗(iX iY µ).

(4) For example, [15, Cor. 1.3] yields immersions of a closed surface into a closed 4-
manifold that are not homotopic to an embedding.

ANNALES DE L’INSTITUT FOURIER



INDUCED CHARACTERS ON NONLINEAR GRASSMANNIANS 2501

Example 4.7. — When M is a surface with H1(M) = {0} and S =
{∗} one point, then the nonlinear Graßmannian is GrS(M) = M and the
transgression map is the identity. Thus the action σ is the identity, and the
two rows in (4.4) coincide.

For a 2-sphere M = S2 the group of volume-preserving diffeomorphisms
is connected: it has the rotation group SO(3) as a deformation retract
by [25]. Thus Diffex(S2, µ)0 = Diff(S2, µ) for any volume form µ on the
2-sphere. Since H1(S2,Z) = {0}, each µ ∈ Ω2

Z(S2) determines uniquely a
differential character hµ ∈ Ĥ1(S2,T). It is the holonomy of a suitable “Hopf
fibration” (S3, θ) → (S2, µ), a principal circle bundle with connection θ and
curvature µ.

The next example shows that every knot on the 3-sphere yields a central
extension of the identity component of the volume-preserving diffeomor-
phism group.

Example 4.8. — On the 3-sphere S3 ≃ SU(2) we consider the bi-invariant
volume form

µ = κ(θ ∧ [θ ∧ θ]),

where θ denotes the Maurer-Cartan 1-form on SU(2). We scale the Killing
form κ such that the cohomology class [µ] of the volume form generates the
image of H3(SU(2),Z) ≃ Z in H3(SU(2),R). Let hµ be the unique differen-
tial character with curvature µ. Each embedded knot in S3 yields a central
Lie group extension of Diff(S3, µ)0. Since H2(S3) = 0, the corresponding
extension of the Lie algebra of divergence free vector fields is trivial [24].

In the next example, the second cohomology of the ambient space is
non-trivial.

Example 4.9. — Let M = S2 × S2 be endowed with the volume form
µ = p∗

1ν ∧ p∗
2ν, with ν an area form on S2 of total area 1. Again we have a

unique differential character hµ on S2 × S2 with the volume form µ with
integral periods as curvature. The isomorphism classes of central extensions
of the Lie algebra of divergence free vector fields on S2 × S2 are classified
by H2(S2 × S2) ≃ R2 [24].

For each embedded S2 in S2 × S2 one gets in a canonical way a central
extension of the identity component of the group of volume-preserving dif-
feomorphisms of S2 × S2. For instance, the diagonal embedding yields a
Lie group extension that integrates a non-trivial Lie algebra extension: the
Lichnerowicz 2-cocycle ψ(X,Y ) =

∫
∆S2

iX iY µ has non-trivial cohomology
class.
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