[Fibrés de Mall et connexions plates sur les variétés de Hopf]
Un fibré de Mall sur une variété de Hopf est un fibré vectoriel holomorphe dont le tiré en arrière sur est trivial. Nous définissons des fibrés de Mall résonants et non-résonants en généralisant la notion de résonance dans les EDO et nous démontrons qu’un fibré de Mall non-résonant admet une connexion holomorphe plate. Nous employons cette observation pour démontrer une version du théorème de linéarisation de Poincaré–Dulac, en montrant que chaque contraction holomorphe bijective et non-résonante de est linéaire dans certaines coordonnées holomorphes adaptées. Nous définissons la notion de résonance pour les variétés de Hopf et nous montrons que chaque variété de Hopf non-résonante est linéaire : ce résultat avait été déjà obtenu par Kodaira au moyen du théorème de Poincaré–Dulac.
A Mall bundle on a Hopf manifold is a holomorphic vector bundle whose pullback to is trivial. We define resonant and non-resonant Mall bundles, generalizing the notion of the resonance in ODE, and prove that a non-resonant Mall bundle always admits a flat holomorphic connection. We use this observation to prove a version of Poincaré–Dulac linearization theorem, showing that any non-resonant invertible holomorphic contraction of is linear in appropriate holomorphic coordinates. We define the notion of resonance in Hopf manifolds, and show that all non-resonant Hopf manifolds are linear; previously, this result was obtained by Kodaira using the Poincaré–Dulac theorem.
Révisé le :
Accepté le :
Première publication :
Keywords: Holomorphic contraction, Hopf manifold, holomorphic bundle, holomorphic connection, affine manifold, resonance, coherent sheaf, Dolbeault cohomology.
Mot clés : Contraction holomorphe, variété de Hopf, fibré holomorphe, connexion holomorphe, variété affine, résonance, faisceau cohérent, cohomologie de Dolbeault.
Ornea, Liviu 1, 2 ; Verbitsky, Misha 3, 4
@unpublished{AIF_0__0_0_A104_0, author = {Ornea, Liviu and Verbitsky, Misha}, title = {Mall bundles and flat connections}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3647}, language = {en}, note = {Online first}, }
Ornea, Liviu; Verbitsky, Misha. Mall bundles and flat connections. Annales de l'Institut Fourier, Online first, 28 p.
[1] Properly discontinuous groups of affine transformations: a survey, Geom. Dedicata, Volume 87 (2001) no. 1-3, pp. 309-333 | DOI | MR | Zbl
[2] Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften, 250, Springer, 1988, xiv+351 pages | DOI | MR | Zbl
[3] Complex analytic connections in fibre bundles, Trans. Am. Math. Soc., Volume 85 (1957), pp. 181-207 | DOI | MR | Zbl
[4] Holonomy of flat affinely connected manifolds, Ann. Math., Volume 62 (1955), pp. 139-151 | DOI | MR | Zbl
[5] Vector bundles with holomorphic connection over a projective manifold with tangent bundle of nonnegative degree, Proc. Am. Math. Soc., Volume 126 (1998) no. 10, pp. 2827-2834 | DOI | MR | Zbl
[6] Holomorphic affine connections on non-Kähler manifolds, Int. J. Math., Volume 27 (2016) no. 11, 1650094, 14 pages | DOI | MR | Zbl
[7] Holomorphic Riemannian metric and the fundamental group, Bull. Soc. Math. Fr., Volume 147 (2019) no. 3, pp. 455-468 | DOI | MR | Zbl
[8] Holomorphic connections and extension of complex vector bundles, Math. Nachr., Volume 204 (1999), pp. 29-39 | DOI | MR | Zbl
[9] Dolbeault cohomology of Hopf manifolds, https://mathoverflow.net/questions/25723/dolbeault-cohomology-of-hopf-manifolds
[10] Recherches sur les points singuliers des équations différentielles, J. de l’Éc. Pol., Volume 9 (1904) no. 2, pp. 5-125 | Zbl
[11] Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 56, Springer, 2011, xii+489 pages | DOI | MR | Zbl
[12] Foundations of modern analysis, Dover Publications, 2010
[13] The cohomology of vector bundles on general non-primary Hopf manifolds, Recent progress on some problems in several complex variables and partial differential equations (Contemporary Mathematics), Volume 400, American Mathematical Society, 2006, pp. 107-115 | DOI | MR | Zbl
[14] Geometric Structures on Manifolds, AMS Open Math. Notes, 2021 (https://www.ams.org/open-math-notes/omn-view-listing?listingId=111282)
[15] Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, 1978, xii+813 pages | MR | Zbl
[16] Sur quelques points d’algèbre homologique, Tôhoku Math. J., Volume 9 (1957), pp. 119-221 (English translation: http://www.math.mcgill.ca/barr/papers/gk.pdf) | DOI | MR | Zbl
[17] Analytic functions of several complex variables, AMS Chelsea Publishing, 2009, xiv+318 pages | DOI | MR | Zbl
[18] Deformations of transversely holomorphic flows on spheres and deformations of Hopf manifolds, Compos. Math., Volume 55 (1985) no. 2, pp. 241-251 | Numdam | MR | Zbl
[19] On the geometry of Hopf manifolds, Osaka J. Math., Volume 12 (1960), pp. 387-402 | MR | Zbl
[20] Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, 1987, xii+305 pages (Kanô Memorial Lectures, 5) | DOI | MR | Zbl
[21] On the structure of compact complex analytic surfaces. II, Am. J. Math., Volume 88 (1966), pp. 682-721 | DOI | MR | Zbl
[22] On the structure of compact complex analytic surfaces. III, Am. J. Math., Volume 90 (1968), pp. 55-83 | DOI | MR
[23] Sur certaines structures fibrées complexes, Arch. Math., Volume 9 (1958), pp. 102-109 | DOI | MR | Zbl
[24] Sur les formes réduites des transformations ponctuelles dans le domaine d’un point double, Bull. Soc. Math. Fr., Volume 39 (1911), pp. 309-345 | DOI | Numdam | MR | Zbl
[25] Cohomology of bundles on homological Hopf manifolds, Sci. China, Ser. A, Volume 52 (2009) no. 12, pp. 2688-2698 | DOI | MR | Zbl
[26] Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer, 1971, ix+262 pages | MR | Zbl
[27] The cohomology of line bundles on Hopf manifolds, Osaka J. Math., Volume 28 (1991) no. 4, pp. 999-1015 | MR | Zbl
[28] Contractions, Fredholm operators and the cohomology of vector bundles on Hopf manifolds, Arch. Math., Volume 66 (1996) no. 1, pp. 71-76 | DOI | MR | Zbl
[29] Vector bundles on complex projective spaces, Modern Birkhäuser Classics, Birkhäuser/Springer, 2011, viii+239 pages (corrected reprint of the 1988 edition, with an appendix by S. I. Gelfand) | DOI | MR | Zbl
[30] Embedding of LCK manifolds with potential into Hopf manifolds using Riesz–Schauder theorem, Complex and symplectic geometry (Springer INdAM Series), Volume 21, Springer, 2017, pp. 137-148 | DOI | MR | Zbl
[31] Non-linear Hopf manifolds are locally conformally Kähler, J. Geom. Anal., Volume 33 (2023) no. 7, 201, 10 pages | DOI | MR | Zbl
[32] Poincaré-Dulac theorem, Encyclopedia of Mathematics (https://encyclopediaofmath.org/wiki/Poincare-Dulac_theorem)
[33] Dolbeault cohomology of compact complex homogeneous manifolds, Proc. Indian Acad. Sci., Math. Sci., Volume 109 (1999) no. 1, pp. 11-21 | DOI | MR | Zbl
[34] The geometry of Hessian structures, World Scientific, 2007, xiv+246 pages | DOI | MR | Zbl
[35] Extension of locally free analytic sheaves, Math. Ann., Volume 179 (1969), pp. 285-294 | DOI | MR | Zbl
[36] Local contractions and a theorem of Poincaré, Am. J. Math., Volume 79 (1957), pp. 809-824 | DOI | Zbl
[37] Normal families of holomorphic mappings, Acta Math., Volume 119 (1967), pp. 193-233 | DOI | MR | Zbl
Cité par Sources :