Cohomological support loci and Pluricanonical systems on irregular varieties
Annales de l'Institut Fourier, Online first, 19 p.

Given an irregular variety X of general type, we show that if a general fiber F of the Albanese morphism of X satisfies certain Hodge theoretic conditions, the 0-th cohomological support locus of K X generates Pic 0 (X). We then show that the condition that the 0-th cohomological support locus of K X generates Pic 0 (X) can often be applied to prove the birationality of certain pluricanonical maps of X.

Étant donné une variété irrégulière X de type général, nous montrons que si une fibre générale du morphisme d’Albanese de X satisfait certaines conditions de la théorie de Hodge, le lieu V 0 (K X ) engendre Pic 0 (X). Nous montrons ensuite que la condition que V 0 (K X ) engendre Pic 0 (X) peut souvent être appliquée pour prouver la birationalité de certaines applications pluricanoniques de X.

Received:
Accepted:
Online First:
DOI: 10.5802/aif.3649
Classification: 14E05, 14D07, 14F10
Keywords: Cohomological support loci, Pluricanonical maps, Generic vanishing.
Mot clés : Lieux de support cohomologiques, applications pluricanoniques, annulation générique.

Jiang, Zhi 1

1 Shanghai Center for Mathematical Sciences, Fudan University, Songhu Road 2005, Shanghai (China)
@unpublished{AIF_0__0_0_A105_0,
     author = {Jiang, Zhi},
     title = {Cohomological support loci and {Pluricanonical} systems on irregular varieties},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3649},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Jiang, Zhi
TI  - Cohomological support loci and Pluricanonical systems on irregular varieties
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3649
LA  - en
ID  - AIF_0__0_0_A105_0
ER  - 
%0 Unpublished Work
%A Jiang, Zhi
%T Cohomological support loci and Pluricanonical systems on irregular varieties
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3649
%G en
%F AIF_0__0_0_A105_0
Jiang, Zhi. Cohomological support loci and Pluricanonical systems on irregular varieties. Annales de l'Institut Fourier, Online first, 19 p.

[1] Arbarello, Enrico; Cornalba, Maurizio; Griffiths, Phillip A.; Harris, Joseph Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, 267, Springer, 1985, xvi+386 pages | DOI | MR | Zbl

[2] Barja, Miguel Angel; Lahoz, Martí; Naranjo, Juan Carlos; Pareschi, Giuseppe On the bicanonical map of irregular varieties, J. Algebr. Geom., Volume 21 (2012) no. 3, pp. 445-471 | DOI | MR | Zbl

[3] Beauville, Arnaud L’application canonique pour les surfaces de type général, Invent. Math., Volume 55 (1979) no. 2, pp. 121-140 | DOI | MR | Zbl

[4] Chen, Jheng-Jie; Chen, Jungkai A.; Chen, Meng; Jiang, Zhi On quint-canonical birationality of irregular threefolds, Proc. Lond. Math. Soc., Volume 122 (2021) no. 2, pp. 234-258 | DOI | MR | Zbl

[5] Chen, Jungkai A.; Hacon, Christopher D. Pluricanonical maps of varieties of maximal Albanese dimension, Math. Ann., Volume 320 (2001) no. 2, pp. 367-380 | DOI | MR | Zbl

[6] Chen, Jungkai A.; Hacon, Christopher D. Linear series of irregular varieties, Algebraic geometry in East Asia (Kyoto, 2001), World Scientific, 2002, pp. 143-153 | DOI | MR | Zbl

[7] Chen, Jungkai A.; Hacon, Christopher D. Pluricanonical systems on irregular 3-folds of general type, Math. Z., Volume 255 (2007) no. 2, pp. 343-355 | DOI | MR | Zbl

[8] Chen, Jungkai A.; Jiang, Zhi Positivity in varieties of maximal Albanese dimension, J. Reine Angew. Math., Volume 736 (2018), pp. 225-253 | DOI | MR | Zbl

[9] Debarre, Olivier On coverings of simple abelian varieties, Bull. Soc. Math. Fr., Volume 134 (2006) no. 2, pp. 253-260 | DOI | Numdam | MR | Zbl

[10] Green, Mark; Lazarsfeld, Robert Higher obstructions to deforming cohomology groups of line bundles, J. Am. Math. Soc., Volume 4 (1991) no. 1, pp. 87-103 | DOI | MR | Zbl

[11] Hacon, Christopher D. A derived category approach to generic vanishing, J. Reine Angew. Math., Volume 575 (2004), pp. 173-187 | DOI | MR | Zbl

[12] Hacon, Christopher D.; Mckernan, James On Shokurov’s rational connectedness conjecture, Duke Math. J., Volume 138 (2007) no. 1, pp. 119-136 | DOI | MR | Zbl

[13] Jiang, Zhi; Lahoz, Martí; Tirabassi, Sofia On the Iitaka fibration of varieties of maximal Albanese dimension, Int. Math. Res. Not. (2013) no. 13, pp. 2984-3005 | DOI | MR | Zbl

[14] Jiang, Zhi; Sun, Hao Cohomological support loci of varieties of Albanese fiber dimension one, Trans. Am. Math. Soc., Volume 367 (2015) no. 1, pp. 103-119 | DOI | MR | Zbl

[15] Kiï, K. The local Torelli theorem for varieties with divisible canonical class, Math. USSR, Izv., Volume 12 (1978), pp. 53-67 | DOI | Zbl

[16] Kollár, János Higher direct images of dualizing sheaves. I, Ann. Math., Volume 123 (1986) no. 1, pp. 11-42 | DOI | MR | Zbl

[17] Kollár, János; Mori, Shigefumi Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages | DOI | MR | Zbl

[18] Lombardi, Luigi; Popa, Mihnea; Schnell, Christian Pushforwards of pluricanonical bundles under morphisms to abelian varieties, J. Eur. Math. Soc., Volume 22 (2020) no. 8, pp. 2511-2536 | DOI | MR | Zbl

[19] Pareschi, Giuseppe; Popa, Mihnea Regularity on abelian varieties. I, J. Am. Math. Soc., Volume 16 (2003) no. 2, pp. 285-302 | DOI | MR | Zbl

[20] Pareschi, Giuseppe; Popa, Mihnea; Schnell, Christian Hodge modules on complex tori and generic vanishing for compact Kähler manifolds, Geom. Topol., Volume 21 (2017) no. 4, pp. 2419-2460 | DOI | MR | Zbl

[21] Peters, Chris The local Torelli theorem. I. Complete intersections, Math. Ann., Volume 217 (1975) no. 1, pp. 1-16 | DOI | MR | Zbl

[22] Saito, Morihiko Decomposition theorem for proper Kähler morphisms, Tôhoku Math. J., Volume 42 (1990) no. 2, pp. 127-147 | DOI | MR | Zbl

[23] Simpson, Carlos Subspaces of moduli spaces of rank one local systems, Ann. Sci. Éc. Norm. Supér., Volume 26 (1993) no. 3, pp. 361-401 | DOI | Numdam | MR | Zbl

[24] Tirabassi, Sofia On the tetracanonical map of varieties of general type and maximal Albanese dimension, Collect. Math., Volume 63 (2012) no. 3, pp. 345-349 | DOI | MR | Zbl

[25] Usui, Sampei Local Torelli theorem for non-singular complete intersections, Jpn. J. Math., New Ser., Volume 2 (1976) no. 2, pp. 411-418 | DOI | MR | Zbl

Cited by Sources: