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MALL BUNDLES AND FLAT CONNECTIONS

by Liviu ORNEA & Misha VERBITSKY (*)

Abstract. — A Mall bundle on a Hopf manifold H = Cn\0
Z is a holomorphic

vector bundle whose pullback to Cn\0 is trivial. We define resonant and non-
resonant Mall bundles, generalizing the notion of the resonance in ODE, and prove
that a non-resonant Mall bundle always admits a flat holomorphic connection. We
use this observation to prove a version of Poincaré–Dulac linearization theorem,
showing that any non-resonant invertible holomorphic contraction of Cn is linear
in appropriate holomorphic coordinates. We define the notion of resonance in Hopf
manifolds, and show that all non-resonant Hopf manifolds are linear; previously,
this result was obtained by Kodaira using the Poincaré–Dulac theorem.

Résumé. — Un fibré de Mall sur une variété de Hopf H = Cn\0
Z est un fibré

vectoriel holomorphe dont le tiré en arrière sur Cn\0 est trivial. Nous définissons
des fibrés de Mall résonants et non-résonants en généralisant la notion de réso-
nance dans les EDO et nous démontrons qu’un fibré de Mall non-résonant admet
une connexion holomorphe plate. Nous employons cette observation pour démon-
trer une version du théorème de linéarisation de Poincaré–Dulac, en montrant que
chaque contraction holomorphe bijective et non-résonante de Cn est linéaire dans
certaines coordonnées holomorphes adaptées. Nous définissons la notion de réso-
nance pour les variétés de Hopf et nous montrons que chaque variété de Hopf
non-résonante est linéaire: ce résultat avait été déjà obtenu par Kodaira au moyen
du théorème de Poincaré–Dulac.
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1. Introduction

1.1. Mall bundles: history and definition

Let f : M −→ M be a continuous map fixing x ∈ M . We say that f is a
contraction centered in x if for any compact set K ⊂ M and any open set
U ⊂ M containing x, a sufficiently high power of f takes K to U .

Hopf manifolds are quotients of Cn\0 by a holomorphic contraction cen-
tered at 0. In his seminal work [28], Daniel Mall computed the cohomology
of a holomorphic vector bundle on a Hopf manifold such that its pullback
to Cn\0 can be extended to a holomorphic vector bundle on Cn. We call
such vector bundles the Mall bundles (Definition 4.1). The same argument
was earlier applied by A. Haefliger, [18].

By the Oka–Grauert homotopy principle ([11, Theorem 5.3.1]), any vec-
tor bundle on Cn is trivial. Therefore, one could define the Mall bundles as
holomorphic vector bundles on a Hopf manifold H = Cn\0

Z such that their
pullback to Cn\0 is trivial (Remark 4.2).

Since 1990-ies, Mall’s theorem was explored and generalized in many
different directions; see, for example [25] and [13].

1.2. Mall theorem and its applications

The main utility of Mall bundles is Mall theorem, which allows one to
compute the cohomology of a Mall bundle in terms of holomorphic sec-
tions. This theorem says that the cohomology Hi(H, B) of a Mall bundle
B on a Hopf manifold H = Cn\0

Z vanish for i ̸= 0, 1, n − 1, n, and that
dim H0(H, B) = dim H1(H, B) and dim Hn−1(H, B) = dim Hn(H, B).
Serre duality gives an isomorphism Hn(H, B) = H0(H, B ⊗ KH)∗, hence
all cohomology of B can be expressed in terms of the holomorphic sections.

We use this observation on cotangent bundle and the tensor bundles
of form (Ω1H)⊗n ⊗OH

TH. It is not hard to see (Theorem 5.16, Step 2)
that the obstruction to existence of a holomorphic connection belongs to
H1(Ω1H ⊗ End(B)). Therefore, a Mall bundle admits a holomorphic con-
nection whenever dim H0(Ω1H ⊗ End(B)) = 0. A Mall bundle which satis-
fies this condition is called non-resonant. A non-resonant Mall bundle has a
unique holomorphic connection, which is a posteriori flat (Theorem 5.16).

This is used to construct a torsion free flat affine connection on a non-
resonant Hopf manifold, proving the Poincaré linearization theorem.
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MALL BUNDLES AND FLAT CONNECTIONS 3

It would be interesting to access the existence of holomorphic connections
on a resonant Mall bundle. We could not find a Mall bundle which does
not admit a holomorphic connection. It is clear that a non-linearizable
Hopf manifold cannot admit a flat, torsion-free holomorphic connection
(Theorem 6.5). However, it is not clear whether the connection with non-
zero holomorphic curvature can exist.

1.3. Mall bundles and holomorphic connections

In this paper we explore the geometric properties of the Mall bundles.
Let γ be an invertible holomorphic contraction of Cn centered in 0, and

H = Cn\0
⟨γ⟩ the corresponding Hopf manifold. Since the pullback of a Mall

bundle to Cn\0 is a trivial bundle, the category of Mall bundles is equivalent
to the category of γ-equivariant bundles on Cn.

Let B be a complex vector bundle on a complex manifold M , and ∇ :
B −→ B ⊗ Λ1M a flat connection. The Hodge component ∂ := ∇0,1 is a
holomorphic structure operator on B. By Koszul–Malgrange theorem ([20,
Chapter I, Proposition 3.7.], [23]), the sheaf B := ker ∂ is a holomorphic
vector bundle on M , with B ⊗OM

C∞M = B. In this situation we say that
the flat connection ∇ is compatible with the holomorphic structure on B.

There are many examples of Mall bundles arising from the geometry of
Hopf manifolds. All tensor bundles, all line bundles, and all extensions of
Mall bundles are also Mall (Proposition 4.5). In many of those examples,
the equivariant action of γ on B preserves a flat connection on B (for
the line bundles, it follows from Proposition 5.13). In other words, these
Mall bundles are obtained from flat bundles by taking the (0, 1)-part of
the connection. It turns out that this situation is quite general, and an
arbitrary Mall bundle admits a compatible flat connection when the so-
called “non-resonance” condition is satisfied.

This can be explained as follows. Recall that a holomorphic connec-
tion (Definition 5.9) on a holomorphic vector bundle B is a holomor-
phic differential operator ∇ : B −→ B ⊗ Ω1M satisfying the Leibniz
rule, ∇(fb) = f∇(b) + df ⊗ ∇(b) for any holomorphic f ∈ OU and any
b ∈ H0(U, B). We want to construct a holomorphic connection on a Mall
bundle on a Hopf manifold; this is equivalent to having a γ-equivariant
connection on its pullback to Cn\0 considered as a γ-equivariant vector
bundle.

Consider the space A of all holomorphic connections on a trivial γ-
equivariant holomorphic vector bundle R on Cn. This is an affine space
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4 Liviu ORNEA & Misha VERBITSKY

modeled on the vector space H0(Ω1Cn ⊗OCn End(R)), and the equivariant
action defines an affine endomorphism of A. The linearization ρ of this
action is a compact endomorphism of H0(Ω1Cn ⊗OCn End(R)) considered
as a topological vector space with C0-topology (Lemma 3.3). If ρ has all
eigenvalues with absolute value < 1, Banach fixed point theorem would
imply that R admits a γ-equivariant holomorphic connection. In fact, it
would suffice to check that all eigenvalues λi of ρ are not equal to 1.

The “resonance” is a property of the eigenvalues of the γ-equivariant ac-
tion; a γ-equivariant vector bundle R on Cn has resonance when the eigen-
values of Dγ on the fiber R|0 are β1, . . . , βm, the eigenvalues of Dγ on T0Cn

are α1, . . . , αn, and there exists a relation of the form βp = βq

∏n
i=1 αki

i ,
with all ki non-negative integers, and

∑
i ki > 0, for some βp, βq, which are

not necessarily distinct.
Let B be a vector bundle on a Hopf manifold, and R the extension

of its pullback to Cn. We prove that R has no resonance if and only if
H0(H, Ω1

H ⊗ End(B)) = 0 (Corollary 5.6). We also prove that any non-
resonant holomorphic vector bundle on a Hopf manifold admits a flat con-
nection compatible with the holomorphic structure (Theorem 5.16).

1.4. Flat affine structures and the development map

The notion of resonance is classical, and harks back to Poincaré, Lattès
and Dulac, who discovered the resonance while working on the normal
forms of ordinary differential equations. In the modern language, they were
looking at the normal form of a real analytic or complex analytic vector
field which has a simple zero at a given point.

The “normal form” is a classical notion, which is roughly equivalent, in
the modern language, to “the moduli space”, but includes a more explicit
description in terms of coordinates.

For vector fields without zeroes, the normal form is very simple: in an
appropriate coordinate system, this vector field takes the form d

dx1
; this is

called “straightening of a vector field”. This result follows directly from the
Peano and Picard theorems on the existence of solutions of ODE.

The normal form theorem for a vector field with a simple zero is known
as the Poincaré–Dulac theorem, [2, 10, 24]. We give a general outline of
this theory, following [32].

Let ẋ = A(x) + u(x) be a formal differential equation, where x(t) ∈ Cn

is a time-dependent point in Cn, A a non-degenerate linear operator, and
u(x) a Taylor series starting from the second order terms. It is said that A
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MALL BUNDLES AND FLAT CONNECTIONS 5

has a resonance if there is a relation of the form λi =
∑n

j=0 mjλj , where
mj ∈ Z⩾0 and

∑n
j=0 mj ⩾ 2.(1)

If A has no resonance, then the normal form of this vector field is very
simple: in appropriate coordinates y1, . . . , yn it can be written as ẏ = A(y).
If A has a resonance, the vector field has a normal form, which is written
in a coordinate system y = (y1, . . . , yn) as follows. Choose yi in such a
way that A is upper triangular in the basis d

dyi
, and the diagonal terms

corresponding to d
dyi

are λi. Then the equation ẋ = A(x)+w(x) has normal
form ẏ = A(y) +

∑
eiwi(y), where ei = d

dyi
is the coordinate vector field,

and
∑

eiwi(y) is a Taylor series obtained as a sum of resonant monomials.
A coordinate monomial ei

∏n
j=1 y

mj

j is resonant if λi =
∑

mjλj .
In general, it is hard to achieve convergence for these formal sums, even

when the differential equation is analytic. However, if eA is a contraction,
the convergence is automatic, because the number of resonant monomials
is finite. Indeed, eA is a contraction if and only if Re λi < 0 for all i, and the
equation Re λi =

∑
mj Re λj , mi ∈ Z⩾0, implies that mi ⩽ maxj,l

Re λj

Re λl
.

A similar result is true for germs of biholomorphic contractions, due to
S. Sternberg ([36]). However, in this case one should replace the linear
resonance by multiplicative, λi =

∏n
j=0 λ

mj

j , as in Definition 5.1.
An invertible holomorphic contraction gives rise to a Hopf manifold, and

Sternberg’s theorem can be interpreted as a structure theorem about Hopf
manifolds; this is how Kodaira used it in [21].

In this paper, we use the flat connection inherent on Mall bundles to
give a new proof of the non-resonant part of the Poincaré–Dulac theo-
rem. Let γ be a germ of an invertible biholomorphic contraction of Cn

with center in 0. We say that γ is non-resonant if the differential D0γ ∈
End(Cn) is a non-resonant matrix. Let H be the corresponding Hopf man-
ifold; then the tangent bundle TH is non-resonant, which is equivalent to
H0(H, Ω1H ⊗ End(TH)) = 0 (Corollary 5.6). This immediately implies
that the flat connection in TH, given by Theorem 5.16, is torsion-free.

To prove the Poincaré–Dulac linearization theorem, we need to find the
coordinates on Cn in which γ is linear. To produce the flat coordinates, we
use the developing map defined in the framework of flat affine geometry
(or, more generally, in Cartan geometries).

A manifold M is called affine, or flat affine, if it is equipped with an
atlas of open sets, identified with open subsets in Rn, with the transition

(1) Later in this chapter, we redefine this notion in such a way that this additive relation
becomes multiplicative, λi =

∏n

j=0 λ
mj

j ; this is done because we work with holomorphic
contractions and not with the vector fields.
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6 Liviu ORNEA & Misha VERBITSKY

functions affine. This is equivalent to having a torsion-free flat affine con-
nection on M (Proposition 6.2). The study of compact flat affine manifolds
is ongoing, with many conjectures still open. We refer to [1] for more details
and open questions.

Each flat affine manifold is equipped with the natural flat, torsion-free
connection ∇. Using this connection, the developing map can be defined
as follows. Assume that (M, ∇) is a simply connected flat affine manifold.
Let θ1, . . . , θn be parallel 1-forms which trivialize the bundle T ∗M . Since
∇ is torsion-free, all the forms θi are closed; however, H1(M) = 0, which
implies that θi are exact, θi = dzi. The map m −→ (z1(m), . . . , zn(m)) is
called the developing map.

We can also understand the developing map in terms of the geodesics,
as the inverse of the exponential map. The exponential map in this context
is a map taking a tangent vector to the point at time 1 on the geodesic
tangent to this vector in time 0. This definition is equivalent to the one given
above (Theorem 6.4). A flat affine structure is complete when the geodesic
equation ∇γ̇t

γ̇t can be solved for all t ∈ R and all initial conditions γ0 ∈ M ,
γ̇0 ∈ Tγ0M .

The completeness condition is tricky and counter-intuitive; indeed, even
a compact flat affine manifold is not necessarily complete. A textbook ex-
ample of a non-complete flat affine manifold is a real linear Hopf manifold
H, obtained as a quotient of Rn\0 by a linear contraction. This manifold is
compact, but its universal cover is Rn\0, and the developing map is an open
embedding Rn\0 ↪→ Rn. To obtain a non-complete geodesic, one needs to
start from a geodesic in Rn passing through 0; its image in H is manifestly
non-complete.

Let M be a complete, simply connected affine manifold. Then the devel-
oping map dev : M −→ Rn is an isomorphism of affine manifolds. This is
a classical result by Auslander–Markus [4] that we prove in Theorem 6.4.

For our present purposes, we need a variation of this result, which ulti-
mately implies the non-resonant case of the Poincaré–Dulac theorem. From
Theorem 5.16, it follows that any non-resonant Hopf manifold M = Cn\0

⟨A⟩ is
equipped with a unique torsion-free flat affine connection compatible with
the complex structure. However, it is not complete, as we explained above.
We prove that this flat affine connection lifted to the universal covering
Cn\0 of M can be extended to 0, resulting in a complete flat affine struc-
ture on Cn. The corresponding developing map puts flat affine coordinates
on Cn, and the contraction A is affine in these coordinates, hence linear.

ANNALES DE L’INSTITUT FOURIER
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This gives a new proof of the non-resonant case of the Poincaré–Dulac
theorem.

Acknowledgment

The authors are gratful to the anonymous referee for a careful reading
of the paper and for very valuable suggestions.

2. Preliminaries on Banach spaces

We gather here what is needed in the sequel concerning compact opera-
tors on Banach spaces and the Riesz–Schauder theorem.

Recall that a subset X of a topological space Y is called precompact,
or relatively compact in Y , if its closure is compact.

Definition 2.1. — A subset K ⊂ V of a topological vector space is
called bounded if for any open set U ∋ 0, there exists a number λU ∈ R>0

such that λU K ⊂ U .

Definition 2.2. — Let V, W be topological vector spaces, A continuous
operator φ : V −→ W is called compact if the image of any bounded set
is precompact.

Now Montel’s theorem [37, Lemma 1.4] can be restated as follows:

Claim 2.3. — Let V = H0(OM ) be the space of holomorphic functions
on a complex manifold M with C0-topology. Then any bounded subset of
V is precompact. In this case, the identity map is a compact operator.

Remark 2.4. — It is not hard to deduce from Montel theorem that the
space of bounded holomorphic functions on M is Banach (that is, complete
as a metric space) with respect to the sup-norm.

The following theorem can be used to obtain a version of the Jordan
normal form for a compact operator on a Banach space. Recall that the
spectrum of a linear operator F is the set of all µ ∈ C such that F − µ Id
is not invertible.

Theorem 2.5 (Riesz–Schauder, [12, Section 5.2]). — Let F : V −→ V

be a compact operator on a Banach space. Then the spectrum Spec F ⊂ C
is compact and discrete outside of 0 ∈ C. Moreover, for each non-zero

TOME 0 (0), FASCICULE 0



8 Liviu ORNEA & Misha VERBITSKY

µ ∈ Spec F , there exists a sufficiently big number N ∈ Z⩾0 such that for
each n > N one has

V = ker(F − µ Id)n ⊕ im(F − µ Id)n,

where im(F − µ Id)n is the closure of the image. Finally, the space ker(F −
µ Id)n is finite-dimensional.

Remark 2.6. — Recall that the root space of an operator F ∈ End(V ),
associated with an eigenvalue µ, is

⋃
n∈Z ker(F −µ Id)n. A vector v is called

a root vector for the operator F if v lies in a root space of F , for some
eigenvalue µ ∈ C. In the finite-dimensional case, the root spaces coincide
with the Jordan cells of the corresponding matrix. Then Theorem 2.5 can
be reformulated by saying that any compact operator F ∈ End(V ) admits a
Jordan cell decomposition, with V identified with a completed direct sum of
the root spaces, which are all finite-dimensional; moreover, the eigenvalues
of F converge to zero.

In the sequel, we shall use the following corollary of the Riesz–Schauder
theorem.

Theorem 2.7. — Let F : V −→ V be a compact operator on a Banach
space. Then the space generated by the root vectors is dense in V .

3. Dolbeault cohomology of Hopf manifolds

3.1. Computation of H0,p(H) for a Hopf manifold

Dolbeault cohomology of Hopf manifolds is a classical subject, but we
could not find the computation for the general case. For the classical Hopf
manifold (a quotient of Cn\0 by a constant times identity), an answer
is given in [19]. More general Hopf surfaces were defined and classified by
Kodaira [21]; he computed some of their cohomology in [22]. For a diagonal
Hopf manifold, the Dolbeault cohomology was computed by D. Mall [27].
For a reference to other special cases of this theorem, see [9, 33].

We recall the statement of Mall’s result:

Theorem 3.1 ([28]). — Let π : Cn\0 −→ H, n ⩾ 3, be the universal
cover of a Hopf manifold, j : Cn\0 ↪−→ Cn the standard embedding map,
and B a holomorphic vector bundle over H such that j∗π∗B is a locally

ANNALES DE L’INSTITUT FOURIER
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trivial coherent sheaf on Cn.(2) Then dim H0(H, B) = dim H1(H, B), and
this group is equal to the space of Z-invariant sections of j∗π∗B. Moreover,
Hi(H, B) = 0 for all i such that 1 < i < n − 1.

Using Mall’s theorem, one can easily compute the (0, ∗)-part of the Dol-
beault cohomology of a Hopf n-manifold H. Indeed, H0,1(H) = H1(OH)
has the same rank as H0(OH) = C, and H0,i(H) = 0 for 1 < i < n − 1.
By Serre duality, H0,n−i(H) = Hi(KH)∗, where K is the canonical bundle,
hence to prove that H0,n−1(H) = H1(KH)∗ and H0,n(H) = H0(KH)∗ van-
ishes, it would suffice to show that the canonical bundle on a Hopf manifold
has no holomorphic sections.

Theorem 3.2. — Let H = (Cn\0)/Z be a Hopf manifold, that is, a
quotient of Cn\0 by a holomorphic contraction, Then Hi(OH) = 0 unless
i = 0, 1, and rk H1(OH) = rk H0(OH) = 1.

Proof. — By Mall’s Theorem 3.1, rk H1(H,OH) = rk H0(H,OH), and
Hi(H,OH) = 0 for 1 < i < n − 1. However, rk H0(H,OH) = 1 because OH

is a trivial line bundle. To finish the proof, it remains only to show that
Hn−1(H,OH) and Hn(H,OH) vanish. By Serre duality, these two spaces
are dual to H0(H, KH) and H1(H, KH), which have the same rank by
Mall’s theorem again. It remains only to prove that H0(H, KH) = 0 for
any Hopf manifold.

Suppose that η is a non-zero element in H0(H, KH) = 0; we consider η

as a holomorphic volume form. Then µ := η ∧ η is a measure on H, which
is strictly positive outside of the zero divisor of η.

Consider the measure π∗µ := π∗η∧π∗η on Cn\0. Since π∗η is Z-invariant,
the measure π∗µ is Z-invariant as well. The canonical bundle of Cn is
trivial, hence, by Hartogs theorem, π∗η can be extended to a holomorphic
section j∗π∗η of KCn . Denote by j∗π∗µ the measure j∗π∗µ := j∗π∗η∧j∗π∗η.
This measure is finite on compacts, and is preserved by the contraction
γ : Cn −→ Cn. This is impossible, unless j∗π∗µ = 0, because any bounded
set is mapped inside a given compact neighbourhood of 0 by a sufficiently
big power of γ. This implies that η = 0, hence H0(H, KH) = 0. □

(2) By Oka–Grauert homotopy principle, [11, Theorem 5.3.1], any holomorphic vector
bundle on Cn is trivial; thus, instead of local triviality, we could assume that j∗π∗B is
a trivial vector bundle.

TOME 0 (0), FASCICULE 0
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3.2. Holomorphic differential forms on Hopf manifolds

The results of this subsection generalize the vanishing H0(H, KH) = 0
given in the proof of Theorem 3.2. It turns out that all holomorphic differ-
ential forms on Hopf manifolds vanish.

In [19] the vanishing of differential forms was proven for the classical Hopf
manifold Cn\0

λ Id ; we could not find other results in the literature, though the
question seems to be elementary and classical.

We start from the following lemma.

Lemma 3.3. — Let γ : Cn −→ Cn be an invertible holomorphic contrac-
tion centered in 0, and D ⊂ Cn an open set such that γ(D) is precompact
in D. Choose an Hermitian metric on Cn, and define the norm on the space
H0

b (D, Ω1D) of bounded holomorphic 1-forms as ∥η∥ := supx∈D|ηx|.(3)

Then the operator γ∗ : H0
b (D, Ω1D) −→ H0

b (D, Ω1D) is compact, and
all its eigenvalues are smaller than 1 in absolute value.

For the proof, we shall need the following result about the compactness
of contraction operators:

Theorem 3.4 ([30, Theorem 2.14]). — Let X be a complex variety,
and γ : X −→ X a holomorphic contraction centered in x ∈ X such that
γ(X) is precompact. Consider the Banach space V = H0

b (OX) of bounded
holomorphic functions with the sup-norm, and let Vx ⊂ V be the space
of all v ∈ V vanishing in x. Then the operator γ∗ : V −→ V is compact,
and the eigenvalues of its restriction to Vx are strictly smaller than 1 in
absolute value.(4)

The differential of γ acts with all eigenvalues |ai| < 1 on T0Cn, by The-
orem 3.4. Then γ∗ (the pullback operator on differential forms) acts on
T ∗

0 Cn with all eigenvalues |ai| < 1. Consider the Taylor expansion of a
function f in 0. The chain rule and the estimate of the eigenvalues of γ∗ on
T ∗

0 Cn imply that γ∗ acts on the non-constant Taylor coefficients of f with
all eigenvalues |ai| < 1.

Let a be an eigenvalue of the compact operator

γ∗ : H0
b (Ω1D) −→ H0

b (Ω1D).

It remains to show that |a| < 1.

(3) By Montel’s theorem, H0
b (D, Ω1D) with this norm is a Banach space.

(4) Since γ∗ maps constants to constants identically, one cannot expect that the eigenval-
ues of γ∗ satisfy |ai| < 1 on V . However, if we add a condition which excludes constants,
such as v(x) = 0, we immediately obtain |ai| < 1.

ANNALES DE L’INSTITUT FOURIER
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The eigenvalues of γ∗ on the vector space Ω1Cn
∣∣
0 are powers of its action

on the cotangent bundle, which are all smaller than 1 in absolute value,
because γ is a contraction. This implies that the eigenvalues of γ∗ on the de-
gree 0 term of the Taylor expansion of η are also smaller than 1 in absolute
value. Summarizing the above estimates, we obtain that limn(γ∗)nη = 0,
hence γ∗ acts on differential forms with all eigenvalues smaller than 1 in
absolute value.

Proposition 3.5. — Let H be a Hopf manifold, and B a tensor power
of Ω1H, B = (Ω1H)⊗l. Then all holomorphic sections of B vanish.

Proof.
Step 1. — The universal cover of the Hopf manifold is Cn\0 equipped

with the free and properly discontinuous holomorphic Z-action. Choose
precompact fundamental domains Mi of the Z-action, with the generator
of Z mapping Mi to Mi+1. Then we may assume that M̃0 := {0}∪

⋃
i⩽0 Mi

is a bounded neighbourhood of 0 in Cn.
Let γ ∈ Aut(Cn) be the generator of the Z-action acting on Cn as a con-

traction. By Lemma 3.3, the action of γ∗ on B defines a compact operator

H0
b (M̃0, B) −→ H0

b (M̃0, B),

with all eigenvalues smaller than 1.
Given a holomorphic differential form α on Cn, we restrict it to M̃0 and

observe that it is bounded because M̃0 is precompact. Using the compact-
ness of γ∗-action and the estimate of its eigenvalues (Lemma 3.3), we show
that the norm of (γn)∗α on M̃0 converges to 0.

Step 2. — Let π : Cn\0 −→ H be the universal cover of a Hopf manifold,
and β ∈ H0(H, B) a section of B. Any holomorphic differential form on
Cn\0 can be extended to Cn, when n > 1, by Hartogs theorem. Therefore,
the section π∗β can be holomorphically extended to 0, and this extension
is γ∗-invariant. By the argument in Step 1, limn(γn)∗α = 0 for any holo-
morphic form α; applying this to π∗β, we conclude that β = 0. □

4. Mall bundles on Hopf manifolds

4.1. Mall bundles: definition and examples

We define Mall bundles on a Hopf manifold as bundles which satisfy the
assumptions of Theorem 3.1.

TOME 0 (0), FASCICULE 0



12 Liviu ORNEA & Misha VERBITSKY

Definition 4.1. — Let π : Cn\0 −→ H be the universal cover of a
Hopf manifold, j : Cn\0 ↪→ Cn the standard embedding map, and B

a holomorphic vector bundle over H such that j∗π∗B is a locally trivial
coherent sheaf on Cn, that is, a holomorphic vector bundle. Then B is
called a Mall bundle.

Note that any holomorphic vector bundle on Cn is trivial, as follows from
the Oka–Grauert homotopy principle ([11, Theorem 5.3.1]).

Remark 4.2. — Let B be a Mall bundle on a Hopf manifold H. Then
its pullback π∗B to Cn\0 is extended to a trivial holomorphic bundle B̂,
hence π∗B = B̂

∣∣
Cn\0 is trivial. Conversely, if π∗B is trivial on Cn\0, it can

be extended to a bundle on Cn, hence it is Mall. One could define Mall
bundles as holomorphic bundles on H such that π∗B is a trivial bundle on
Cn\0.

Since j∗ commutes with direct sums and tensor products, the following
observation is clear.

Claim 4.3. — A tensor product of Mall bundles, a direct sum of Mall
bundles, and any direct sum component of a Mall bundle is again a Mall
bundle.

Proof. — For direct sums and tensor products the statement is obvious,
because these operations commute with the functor j∗π∗. For a direct sum
component, consider a coherent sheaf F on a complex manifold M , and
let F|x := F ⊗OM

(OM /mx). This is a finite-dimensional space; if F is a
vector bundle, F|x is the fiber of F in x. By Nakayama lemma, a coherent
sheaf is generated by any collection {si} of sections which generates F|x =
F ⊗OM

(OM /mx) for all x ∈ M . Indeed, let Fx be the stalk of F in x.
Then Fx is a finitely-generated module over a local ring OM,x of germs
of holomorphic functions, which is Noetherian by Lasker theorem ([17,
Chapter II, Theorem B.9]). Nakayama lemma tells that a finitely-generated
module A over a Noetherian local ring is generated by any set of elements
which generate A modulo the maximal ideal. Therefore, every stalk Fx of
F is generated by the images of si in Fx; by definition, this implies that F

is generated by {si}.
We have shown that F is a vector bundle whenever rkFx is constant in x.
Given a direct sum decomposition F = F′ ⊕ F′′, we immediately ob-

tain rkFx = rkF′
x + rkF′′

x . If rkF|x is constant in x, this implies that
rkF′

x = const and rkF′′
x = const because rkF′

x is upper semicontinuous
as a function of x by Nakayama lemma. This implies that for any direct

ANNALES DE L’INSTITUT FOURIER



MALL BUNDLES AND FLAT CONNECTIONS 13

sum decomposition F = F′ ⊕ F′′ of a vector bundle onto a direct sum of
coherent sheaves, the summands are also vector bundles. □

For the next proposition, we need the following claim, which is almost
trivial.

Claim 4.4. — Let 0 −→ A −→ B −→ C −→ 0 be an exact sequence of
holomorphic bundles on a Hopf manifold. Assume that C and another of
these bundles, B or A, are Mall. Then the third one is also Mall.

Proof. — The functor π∗ is exact, and j∗ is left exact. Therefore, apply-
ing the functor j∗π∗ to this sequence, we obtain the following long exact
sequence

(4.1) 0 −→ j∗π∗A
α−→ j∗π∗B

β−→ j∗π∗C −→ R1j∗π∗A∗ −→ · · ·

where Rij∗ is the higher derived pushforward functor. If C is Mall, then
the sheaf j∗π∗C is locally free. Therefore, the map β has a section β′ :
j∗π∗C −→ j∗π∗B. This gives a subsheaf α(j∗π∗A) ⊕ β′(j∗π∗C) ⊂ j∗π∗B,
which by construction coincides with j∗π∗B outside of 0. By Hartogs, it
has to coincide with j∗π∗B in 0 as well. Then we have a direct sum de-
composition j∗π∗A ⊕ β′(j∗π∗C) = j∗π∗B. Therefore, one of the sheaves
j∗π∗A and j∗π∗B is locally free when the other one is locally free (the
sheaf j∗π∗C = β′(j∗π∗C) is locally free by assumption). □

The next Proposition contains a list of examples of Mall bundles.

Proposition 4.5. — Let H be a Hopf manifold. Then any line bundle
on H, any tensor bundle TH⊗p ⊗OH

T ∗H⊗q, their tensor products and
direct sum components are Mall.

Proof. — Tensor products and direct sum components were treated in
Claim 4.3. Let L be a line bundle on a Hopf manifold, and j∗π∗L the
corresponding sheaf on Cn (Definition 4.1). By Siu’s extension theorem,
[35, Main Theorem], j∗π∗L is a normal (and, therefore, reflexive) coherent
sheaf of rank 1, hence it is locally free ([29, Chapter II, Lemma 1.1.15]).
This implies that L is Mall.

The tangent bundle TH is Mall because π∗TH is the tangent bundle
T (Cn\0); since the tangent bundle TCn is trivial, j∗π∗TH = TCn by Har-
togs theorem. □

4.2. G-equivariant sheaves

Definition 4.6. — Let M be a topological space equipped with the
action of the group G by continuous maps. A G-equivariant sheaf is a sheaf
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F equipped with a collection of isomorphisms Rg : F −̃→ g∗(F) for all
g ∈ G, which defines a G-action on the étale space of F.(5)

Remark 4.7. — Clearly, the equivariance of the G-action on F can be
translated into the equivariance relation Rg1g2 = g∗

2(Rg1)Rg2 , for all
g1, g2 ∈ G.

Theorem 4.8. — Let M be a locally connected, locally simply con-
nected topological space, and π : M1 −→ M a Galois cover, that is, a
covering equipped with a free action of the group G such that M = M1/G.
Then the category of sheaves on M is equivalent to the category of G-
equivariant sheaves on M1.

Proof. — Let F be a sheaf on M . Then the sheaf π∗(F) is G-equivariant;
indeed, g ◦ π = π for any g ∈ G, hence π∗(F) = g∗(π∗(F)), which defines
a G-equivariant structure on π∗(F).

Conversely, let F1 be a G-equivariant sheaf on M1, U ⊂ M , and U1 :=
π−1(U). The equivariant structure on F1 defines a G-action on the space of
sections F1(U1). Indeed, g∗(F1)(U1) is by definition isomorphic to F1(U1),
and the isomorphisms Rg : g∗(F1)(U1) −→ F1(U1) can be interpreted as
self-maps on this space indexed by g ∈ G. The equivariance relation Rg1g2 =
g∗

2(Rg1)Rg2 implies that the composition of these self-maps is compatible
with the multiplication in G.

Consider the sheaf FG
1 on M with the space of sections FG

1 (U) equal
to the space of G-invariant sections of F1(π−1(U)). We claim that this
functor from the category of G-equivariant sheaves on M1 to the category
of sheaves on M is inverse to the pullback functor defined above.

Clearly, any section of F on U can be interpreted as a G-invariant section
of π∗(F) on π−1(U), and any G-invariant section of π∗(F) comes from
F(U). Therefore, the composition of π∗ and ( · )G is equivalent to identity.
To prove that π∗ and ( · )G are inverse, it remains to show that the functor
F1 −→ π∗(FG

1 ) is naturally isomorphic to identity ([26, Section IV.4]). We
leave this as an exercise to the reader. □

5. Resonance in Mall bundles

5.1. Resonant matrices

Definition 5.1. — Let A ∈ GL(n,C) be a matrix with eigenvalues
α1, . . . , αn. This matrix is called resonant if there exists a relation α =
(5) This notion is called a G-sheaf in [16].
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∏n
i=1 αki

i , with α an eigenvalue of A and ki ∈ Z⩾0,
∑

i ki ⩾ 2, and non-
resonant otherwise.

The reason we need this definition is the following elementary lemma.

Lemma 5.2. — Let γ : Cn −→ Cn be a germ of a holomorphic diffeo-
morphism in 0. Let B := TCn

⊗
OCn

(T ∗Cn)⊗k, k > 1. Diffeomorphisms
of Cn can be naturally extended to TCn and to its tensor powers. Let B0
denote the space of germs of sections of B in 0; clearly, γ induces a natural
automorphism of B0. Assume that the differential A := D0γ of γ in 0 is
non-resonant. Then any γ-invariant germ v ∈ B0 vanishes.

Proof. — Let t1, . . . , tn be coordinates on Cn. Consider the Taylor series
decomposition for v:

v =
∑

i

viPi(t1, . . . , tn)

where Pi is a homogeneous polynomial of degree i and vi ∈ V ⊗ (V ∗)⊗k,
where V = T0Cn. Let l be the smallest integer such that Pl ̸= 0. The
corresponding Taylor term can be considered as an element of V ⊗(V ∗)⊗k ⊗
Syml(V ∗). By the chain rule, this tensor is coordinate-independent, hence
it is also A-invariant. Let α1, . . . , αn be the eigenvalues of A on T0Cn. Then
α−1

1 , . . . , α−1
n are the eigenvalues of A on T ∗

0 Cn. This is clear, because A

preserves the pairing between TCn and T ∗Cn: the differential Dγ acts
covariantly on vector field and contravariantly on 1-forms.

We obtain that the eigenvalues of A on V ⊗(V ∗)⊗k ⊗Syml(V ∗) are prod-
ucts of the form αl

∏k
i=1 α−1

ji

∏l
i=1 α−1

si
. Unless A acts on V ⊗ (V ∗)⊗k ⊗

Syml(V ∗) with an eigenvalue 1, there would be no A-invariant vectors.
Therefore v = 0 unless αl =

∏n
i=1 αki

i , where
∑

i ki ⩾ 2, for some eigen-
value αl. □

5.2. Resonant equivariant bundles

Definition 5.3. — Let γ be an invertible holomorphic contraction on
Cn, centered in 0, and B a γ-equivariant holomorphic vector bundle on
Cn. Let α1, . . . , αn be the eigenvalues of the differential A = D0γ of γ

in 0, and β1, . . . , βm the eigenvalues of the differential of the equivariant
action of γ on the fiber B

∣∣
0. We say that B is non-resonant if there is no

multiplicative relation of the form βi = βj

∏k
l=1 αil

for some integer k ⩾ 1,
where {αi1 , . . . , αik

} is any collection of k eigenvalues, possibly repeating,
and βi, βj ∈ {β1, . . . , βm} any two eigenvalues, possibly the same.
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Remark 5.4. — A linear map with eigenvalues α1, . . . , αn is resonant
if one of the eigenvalues is a product of two or more eigenvalues. The
data associated with a γ-equivariant bundle consists of linear operators,
the differential Dγ

∣∣
T0Cn with the eigenvalues αi and the differential of the

equivariant action of γ on the fiber B
∣∣
0, with the eigenvalues βj . It has

resonance when one of βj is a product of another and one or more αi’s.
The resonance in the bundle TCn with the natural γ-equivariant structure
is the same as the resonance in the linear operator Dγ

∣∣
T0Cn .

In other words, if B is TCn with the standard γ-equivariant structure,
the relation βi = βj

∏k
l=1 αil

becomes αi = αj

∏k
l=1 αil

, k ⩾ 1, that is,
B = TCn is non-resonant if and only if the differential A = D0γ is non-
resonant.

Resonant automorphisms can be characterized in terms of invariant 1-
forms with coefficients in endomorphisms of B, as follows.

Theorem 5.5. — Let γ : Cn −→ Cn be an invertible holomorphic con-
traction centered in 0, and B a γ-equivariant vector bundle. Then B is
resonant if and only if there exists a non-zero γ-invariant section of the
bundle Ω1Cn ⊗ End(B).

Proof.

Step 1. — Let R be a γ-invariant section of Ω1Cn⊗End(B). We are going
to prove that B is resonant. By [11, Theorem 5.3.1], B is trivial. Choose a
basis b1, . . . , bm of B. Let bij ∈ End(B) be the corresponding elementary
matrices, defining a basis in End(B). We write R =

∑
i,j,l fijl dzl ⊗ bij ,

where zi are coordinates in Cn, and fijl ∈ OCn a function. We write each fijl

as Taylor series, fijl =
∑

s P ijl
s , where P ijl

s (z1, . . . , zn) is a homogeneous
polynomial of coordinate functions zi of degree s. Let d be the smallest
number for which not all P ijl

d vanish. Using the chain rule again, we obtain
that

∑
i,j P ijl

d dzl ⊗ bij is D0γ-invariant. This is a D0γ-invariant vector in
the space W ∗ ⊗ End(B|0) ⊗ Symd(W ∗), where W = TCn, with the action
of D0γ which comes from the tensor product.

The eigenvalues of D0γ on the space W ∗ ⊗ End(B|0) ⊗ Symd(W ∗) are
eigenvalues of D0γ on W ∗ times the eigenvalues on End(B|0) times a prod-
uct of d eigenvalues of D0γ on W ∗, that is, a numbers of form βuβ−1

v α−1
l .

Since
∑

i,j P ijl
d dzl ⊗ bij ∈ W ∗ ⊗ End(B|0) ⊗ Symd(W ∗) is D0γ-invariant,

one of these numbers is 1. This gives a relation βu = βvαl

∏d
l=1 αil

.
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Step 2. — Let B be a resonant bundle; we are going to produce an in-
variant section of Ω1Cn⊗End(B). We follow the standard scheme (see The-
orem 3.4, [31, Theorem 3.1]), using the Riesz–Schauder theorem and com-
pactness of the action of holomorphic contractions on holomorphic func-
tions; this time, the contraction acts on the sections of an equivariant bun-
dle. Let M0 ⊂ Cn be a subset which satisfies γ(M0) ⋐ M0. We equip B with
a Hermitian metric, and notice that the space H0

b (M0, Ω1M0 ⊗ End(B))
with sup-norm is Banach, by Montel theorem. Denote by V the bundle
Ω1M0 ⊗ End(B). By the standard argument (Theorem 3.4), the operator
γ∗ : H0

b (M0, V ) −→ H0
b (M0, V ) is compact.

Consider the filtration on H0
b (M0, V ) by the powers of the maximal ideal

m0 of zero,

H0
b (M0, V ) ⊃ H0

b (M0,m0V ) ⊃ H0
b (M0,m2

0V ) ⊃ · · ·

The finite-dimensional space H0
b (M0,V )

H0
b

(M0,mk
0 V ) is interpreted as the space of (k −

1)-jets of the sections of V in 0.
Using the integral Cauchy formula, any derivative of a function in a point

can be expressed through a certain integral of this function. Therefore, the
restriction map

H0
b (M0, V ) −→ H0

b (M0, V )
H0

b (M0,mk
0V )

= V
∣∣
0

taking a section of V to its (k − 1)-jet is also continuous in sup-norm. This
implies also that the subspaces H0

b (M0,mk
0V ) ⊂ H0

b (M0, V ) of sections
with vanishing (k − 1)-jet are closed.

The map γ∗ : H0
b (M0, V ) −→ H0

b (M0, V ) preserves this filtration. There-
fore, the eigenvalues of γ∗ on H0

b (M0, V ) and on the associated graded space⊕
i

H0
b (M0,mi−1V )

H0
b

(M0,mi
0V ) are equal. However, the space H0

b (M0,md−1V )
H0

b
(M0,md

0V ) is naturally
identified with W ∗ ⊗C Symd W ∗ ⊗C End(B|0), where W = T0Cn (Step 1).
In Step 1, we identified this space with the space of (d − 1)-th Taylor coef-
ficients of a section of V .

The eigenvalues of γ∗ on this space are β1β−1
2

∏d+1
i=1 α−1

i , where
β1, β2 denotes some eigenvalues of the equivariant action of γ∗ on B|0,
possibly equal, and α1, . . . , αd+1 is a collection of some eigenvalues of
D0γ on W , also possibly equal. The existence of resonance on B implies
that

∏d+1
i=1 α−1

i β1β−1
2 = 1 for an appropriate choice of the eigenvalues

α1, . . . , αd+1, β1, β2, and this is equivalent to γ∗ having eigenvalue 1 on
some γ∗-invariant quotient of H0

B(M0, V ), hence on H0
B(M0, V ), too. □

We can rewrite this theorem as a result about Mall bundles.
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Corollary 5.6. — Let BH be a Mall bundle on a Hopf manifold H =
Cn\0
⟨γ⟩ , and B := j∗π∗BH the corresponding γ-equivariant bundle on Cn.

Then B is resonant if and only if H0(H, Ω1H ⊗OH
(End BH)) ̸= 0.

When B = Ω1Cn, the equivariant bundle B is resonant if and only if the
action of D0γ∗ on T0Cn is resonant:

Corollary 5.7. — Let γ : Cn −→ Cn be an invertible contraction
centered in zero, W := T0Cn, and A = D0γ ∈ End W its differential in
zero. Then the following are equivalent.

(i) The matrix A is resonant.
(ii) There exists a non-zero γ∗-invariant section of Ω1(Cn)⊗End(TCn).
(iii) The bundle TCn with the natural equivariant structure induced by

the action of γ is resonant.

Proof. — From the definition it is clear that A is resonant if and only
if the γ-equivariant bundle B = Ω1Cn is resonant. By Theorem5.5, this is
equivalent to the existence of non-zero γ∗-invariant sections of Ω1(Cn) ⊗
End(TCn). □

Consider an invertible contraction γ : Cn −→ Cn centered in zero, and
let B be a γ-equivariant vector bundle. Let R = (Ω1Cn)⊗k be the bundle of
k-multilinear forms on Cn. We consider R as a γ-equivariant vector bundle
as well. Then the set of eigenvalues of the γ∗-action on H0

b (M0, R⊗End B)
is equal to {

β1β−1
2

d+k∏
i=1

α−1
i

}
Here d ∈ Z⩾0, α1, . . . , αd+k is any collection of eigenvalues of D0γ∗ on
W = T0Cn, and β1, β2 some eigenvalues of γ∗ on B|0. This is proven by the
same argument as proves Theorem 5.5, Step 2. We obtained the following
corollary.

Corollary 5.8. — Let γ : Cn −→ Cn be an invertible contraction of
Cn centered in zero, and B a γ-equivariant vector bundle. Assume that B

is non-resonant. Consider R = (Ω1Cn)⊗k, k ⩾ 1, as a γ-equivariant bundle.
Then the space of γ∗-invariant sections of R ⊗OCn B is empty.

5.3. Holomorphic connections on vector bundles

To go on, we need the notion of a holomorphic connection.
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Definition 5.9. — Let B be a holomorphic vector bundle on a complex
manifold, and ∇ : B −→ B⊗OM

Ω1M a differential operator which satisfies
∇(fb) = df ⊗ b + f∇b for any locally defined holomorphic function f and
any local section b of B. Then ∇ is called a holomorphic connection. Using
the Leibniz rule, the connection can be extended to a map on the B-valued
differential forms,

B
∇−→ B ⊗OM

Ω1M
d∇−→ B ⊗OM

Ω2M
d∇−→ B ⊗OM

Ω3M
d∇−→ · · ·

Its curvature can be defined as the map b 7→ ∇2(b) taking b ∈ B to
d∇(∇b) ∈ B ⊗OM

Ω2M ; since this map is OM -linear, it can be considered
as an End(B)-valued holomorphic 2-form, ∇2 ∈ Ω2M ⊗OM

End(B).

The notion of a holomorphic connection was introduced by M. Atiyah
in [3]; for more results and references, see [5, 6, 7].

Every flat connection is holomorphic with respect to the holomorphic
structure induced by this connection, but there are more holomorphic con-
nections than there are flat connections. Indeed, holomorphic connections
can be realized as objects of differential geometry, as follows.

Let (B, ∇) be a complex vector bundle with connection on a complex
manifold, and ∂ = ∇0,1 the corresponding ∂-operator. By Koszul–Malgrange
theorem ([20, Chapter I, Proposition 3.7], [23]), ∂ defines a holomorphic
structure on B if and only if ∂2 = 0, or, equivalently, when ∇2 ∈ [Λ2,0(M)⊕
Λ1,1(M)] ⊗ End(B).

Proposition 5.10. — Let (B, ∇) be a complex vector bundle with con-
nection on a complex manifold, and ∂ = ∇0,1 the corresponding ∂-operator.
Assume that ∂2 = 0, and let B = ker ∂ be the holomorphic vector bun-
dle obtained from ∂ using [20, Chapter I, Proposition 3.7], [23]. Then the
following assertions are equivalent.

(i) The operator ∇1,0 is a holomorphic connection operator on B.
(ii) ∇2 ∈ Λ2,0(M) ⊗ End(B).

Proof. — If ∇1,0 is a holomorphic connection operator, it commutes with
∂, hence the (1, 1)-part of the curvature of ∇ vanishes. Conversely, if ∇2 ∈
Λ2,0(M) ⊗ End(B), this implies that ∇1,0 commutes with ∂, hence ∇1,0

maps holomorphic sections of B to the holomorphic sections of B⊗Λ1,0(M).
This implies that ∇1,0 is a holomorphic connection. □

Remark 5.11. — A holomorphic vector bundle B has Chern classes repre-
sented by closed forms of type (p, p), because it admits Chern connections.
However, the Chern classes of a bundle equipped with a holomorphic con-
nection are represented by holomorphic forms of type (2p, 0). On a Kähler
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manifold (or any other manifold admitting the (p, q)-decomposition in coho-
mology), this is impossible, unless ci(B) = 0 for all i. This is why holomor-
phic connections rarely occur in Kähler geometry. However, on non-Kähler
manifolds they don’t seem that rare.

The Picard group Pic(M) of a complex manifold M (that is, the group of
line bundles, with the group operation defined by the tensor multiplication)
is naturally identified with H1(M,O∗

M ). Similarly, one could indentify the
group of 1-dimensional local systems with H1(M,C∗

M ). Here C∗
M denotes

the constant sheaf with the space of sections H0(U,C∗
M ) = C∗ for each

connected open set U ⊂ M . The natural map H1(M,C∗
M ) −→ H1(M,O∗

M )
can be interpreted as a forgetful map, taking a flat line bundle (L, ∇) to
the holomorphic line bundle (L, ∇0,1).

For Kähler manifolds, the map H1(M,C∗
M ) −→ H1(M,O∗

M ) is never an
isomorphism, unless b1(M) = 0. Indeed, from the exponential exact se-
quence it follows that dimC H1(M,C∗

M ) = b1(M) and dimC H1(M,O∗
M ) =

1
2 b1(M). However, on a Hopf manifold, these two groups are isomorphic,
that is, every holomorphic line bundle admits a unique flat connection
(Proposition 5.13).

For Kähler manifold, one could characterize line bundles admitting a
holomorphic connection in terms of the Chern class.

Claim 5.12. — Let L be a holomorphic line bundle on a compact Kähler
manifold. Then L admits a holomorphic connection if and only if its first
Chern class is a torsion.

Proof. — Indeed, if c1(L) is a torsion, L admits a flat connection by
ddc-lemma [15]. Conversely, if L is a holomorphic line bundle admitting a
holomorphic connection, then, by Chern–Weil theory, its first Chern class
has Hodge type (2, 0); however, the Chern classes of a holomorphic bundle
have type (p, p), hence the de Rham representative of c1(L) vanishes. □

For the sake of completeness, we give the proof of the following result of
Kodaira:

Proposition 5.13 ([22, page 57]). — Let H be a Hopf manifold, and
H1(H,C∗

H) the cohomology with coefficients in the constant sheaf C∗
H .

Then the natural map H1(H,C∗
H) −→ H1(H,O∗

H) to the Picard group is
an isomorphism.

Proof.
Step 1. — Consider the exponential exact sequences

0 −→ ZH −→ OH −→ O∗
H −→ 0
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and

0 −→ ZH −→ CH −→ C∗
H −→ 0.

The corresponding long exact sequences of cohomology give

0 −→ H1(ZH) −→ H1(OH) −→ H1(O∗
H) −→ H2(ZH) = 0

and

0 −→ H1(ZH) −→ H1(CH) −→ H1(C∗
H) −→ H2(ZH) = 0.

It remains to show that the natural map ν : H1(CH) −→ H1(OH) is an
isomorphism; however, both groups are equal to C (Theorem 3.2), hence
it would suffice to show that ν ̸= 0. The relevant E2-term of the Dol-
beault spectral sequence is (H0,1(H) = C; H1,0(H) = 0) (Theorem 3.2,
Proposition 3.5). The sum of dimensions of these spaces is 1. However,
b1(H) = 1, hence the higher differentials of this spectral sequence vanish
on E1,0

2 + E0,1
2 and it degenerates in the E1,0

2 + E0,1
2 -term. This implies

that the first de Rham cohomology H1(H) is equal to the first Dolbeault
cohomology H0,1(H) ⊕ H1,0(H).

Step 2. — The standard map ν : H1(CH) −→ H1(OH) is the natural
map from the E0,1

∞ -term of this spectral sequence to E0,1
2 , which is an

isomorphism because the spectral sequence degenerates. □

5.4. The flat connection on a non-resonant Mall bundle

Definition 5.14. — Let BH be a Mall bundle on a Hopf manifold
H = Cn\0

⟨γ⟩ , and B := j∗π∗BH the corresponding γ-equivariant bundle on
Cn. We call BH resonant if H0(H, Ω1

H⊗End BH) ̸= 0, or, equivalently, when
B = j∗π∗BH is a resonant γ-equivariant bundle on Cn (Corollary 5.6).

Remark 5.15. — Let BH be a non-resonant Mall bundle on a Hopf man-
ifold. Since the difference of two connections is a holomorphic 1-form with
coefficients in endomorphisms, and H0(H, Ω1

H ⊗ End BH) = 0, a holomor-
phic connection on BH is unique, if it exists.
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Theorem 5.16. — Let B be a holomorphic vector bundle over a Hopf
manifold H, dimC H ⩾ 3. Assume that B admits a flat connection com-
patible with the holomorphic structure. Then B is Mall.(6) Conversely, any
non-resonant Mall bundle on H admits a flat connection ∇.(7)

Proof.

Step 1. — Let (B, ∇) be a holomorphic bundle with a flat connection
on H, and π : Cn\0 −→ H the universal cover. Since π1(Cn\0) = 0, the
flat bundle π∗B is trivial, hence B is Mall.

Step 2. — Let B be a non-resonant Mall bundle on a Hopf manifold
H. We are going to show that B admits a holomorphic connection. Lo-
cally, a holomorphic connection always exists, and the difference between
two holomorphic connections is a section of Ω1U ⊗OU

End(B). Therefore,
the obstruction to the existence of a holomorphic connection belongs to
H1(H, Ω1H ⊗OH

End(B)). Since B is Mall, we have

rk H1(H, Ω1H ⊗OH
End(B)) = rk H0(H, Ω1H ⊗OH

End(B))

(Theorem 3.1). When B has no resonance, rk H0(H, Ω1H ⊗OH
End(B)) = 0

hence B admits a connection.
Step 3. — To finish Theorem 5.16, it remains to show that any holomor-

phic connection ∇ on a non-resonant Mall bundle B is flat. However, its
curvature is a holomorphic 2-form, and the space of holomorphic 2-forms
with coefficients in End(B) vanishes by Corollary 5.8. □

6. Flat connections on Hopf manifolds

6.1. Developing map for flat affine manifolds

For an introduction to flat affine manifolds, see [1, 14, 34] and the ref-
erences therein. Recall that an affine function on a vector space is a linear
function plus constant.

(6) By a theorem of Buchdahl and Harris, any bundle B on H admitting a holomorphic
connection is Mall. Indeed, a bundle on Cn\0 with a holomorphic connection can be
extended to Cn by [8, Theorem 1.2], and any holomorphic bundle on Cn is trivial by
Grauert–Oka principle, [11, Theorem 5.3.1].
(7) All flat connections are holomorphic (Proposition 5.10). By Remark 5.15, B admits
a unique holomorphic connection, hence ∇ is unique.
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Definition 6.1. — Let M be a manifold equipped with a sheaf F ⊂
C∞M . We say that F defines a flat affine structure on M if for each x ∈ M

there exists a neighbourhood diffeomorphic to the ball B ⊂ Rn such that
in this coordinate patch, the sheaf F|B is the sheaf of affine functions on
B. In other words, M is a flat affine manifold if there exists an open cover
{Ui} with all Ui diffeomorphic to an open ball in Rn and all transition
maps are affine. Such a cover is called an affine atlas of M . The sheaf F is
called the sheaf of affine functions on the flat affine manifold M .

Flat affine structures can be equivalently described in terms of torsion-
free, flat connections. The following proposition is well-known; we include
its proof for completeness.

Proposition 6.2. — Let (M,F) be a flat affine manifold. Then M

admits a unique torsion-free, flat connection ∇ such that the sections f of
F satisfy ∇(df) = 0. Conversely, if ∇ is a torsion-free flat connection on
M , then the sheaf {f ∈ C∞M | ∇(df) = 0} defines a flat affine structure.

Proof. — Let (M,F) be a flat affine manifold, and {Ui} its affine atlas.
Each Ui admits a connection ∇ : TM −→ TM ⊗ Λ1M with

(6.1) ∇

∑
j

fj
∂

∂xj

 =
∑

j

dfj ⊗ ∂

∂xj

where xj are coordinate functions; this connection is clearly flat and torsion-
free, and ker(∇d) is the sheaf of affine functions on Ui. We call (6.1) the
standard flat connection on U ⊂ Rn.

Conversely, let ∇ be a torsion-free affine connection on M . Locally in an
open subset U ⊂ M , the bundle Λ1M admits a basis θ1, . . . , θn of ∇-parallel
sections, which are closed because ∇ is torsion-free (here we use the relation
dθ = Alt(∇θ), which holds for any torsion-free connection). This implies
that θi = dxi whenever U is simply connected. The functions xi give a co-
ordinate system on U , because dxi are linearly independent, and in this co-
ordinate system the affine functions are those which satisfy ∇(df) = 0. □

Further on, we will also call a torsion-free flat connection an affine struc-
ture and a pair (M, ∇) an affine manifold, or a flat affine manifold.

Definition 6.3. — Let ∇ be a connection on TM , where M is a smooth
manifold. We say that (M, ∇) is complete if for any x ∈ M and any
v ∈ TxM , there exists a solution γv : R −→ M of the geodesic equa-
tion ∇γ′

v(t)γ
′
v(t) = 0 for all t ∈ ]−∞, ∞[. The exponential map is the

map expx : TxM −→ M taking v ∈ TxM to γv(1). Clearly, expx is a
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diffeomorphism in a neighbourhood U of 0 ∈ TxM . The developing map
dev : expx(U) −→ U is the inverse of expx; in general, it is defined only in
a neighbourhood of x ∈ M .

The following classical theorem, due to Auslander and Markus, is well
known. It can be considered as an alternative definition of the complete
flat affine manifold.

Theorem 6.4 ([4, 14]). — Let (M, ∇) be a simply connected, connected
flat affine manifold. Then the developing map can be extended to an affine
map dev : M −→ TxM , also called the developing map. If, in addition, M

is complete, the developing map is a diffeomorphism.

6.2. Flat affine connections on a Hopf manifold

The following result will be used further on in our proof of the classical
Poincaré linearization theorem.

Theorem 6.5. — Let H = Cn\0/Z be a Hopf manifold. Assume that
TH admits a torsion-free, flat connection ∇ compatible with the holomor-
phic structure. Then H is isomorphic to a linear Hopf manifold Cn\0/⟨A⟩,
where A ∈ GL(n,C) is a linear endomorphism.

Proof.
Step 1. — The universal cover H̃ of H is biholomorphic to Cn\0. To

avoid confusion, we denote its completion Cn by M . By a theorem of
Buchdahl–Harris ([8, Theorem 1.2]), any bundle with a holomorphic con-
nection, defined on the complement M\Z to a codimension ⩾ 2 set Z,
can be extended over this set to a bundle with holomorphic connection on
M .(8) Therefore, the flat connection ∇ on TH can be extended to the flat,
torsion-free connection on the completion M of the universal cover of H,
identified with Cn. Denote by ∇M the flat, torsion-free connection on M

given by Buchdahl–Harris theorem.
To finish the proof of Theorem 6.5, it would suffice to show that the

flat affine manifold (M, ∇M ) is isomorphic to Cn with the standard flat
connection. Since the Z-action on M preserves the affine structure and
fixes 0, it is defined by a linear endomorphism, and (M\0)/Z is a linear
Hopf manifold.

(8) We are much grateful to the referee for a reference to this superb paper.
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It remains to show that the developing map dev : M −→ Cn associ-
ated to ∇M is an isomorphism. This would follow from Theorem 6.4 if we
could prove that ∇M is complete, but we have no direct control over the
connection form of ∇M , hence the completeness is not obvious.

Step 2. — Completeness of M is implied by A-equivariance of the de-
velopment map.

Denote by A the generator of the Z-action on M contracting M to 0 and
let A0 ∈ End(T0M) be its differential. By construction, ∇M is A-invariant.
Therefore, A maps the parallel 1-forms to parallel 1-forms. Fix a basis
λ1, . . . , λn of parallel 1-forms on M , and let f1, . . . , fn be its antiderivatives,
dfi = λi vanishing in the origin 0 ∈ M = Cn By definition, the development
map dev takes m ∈ M to (f1(m), . . . , fn(m). Since A acts linearly on the
space ⟨λ1, . . . , λn⟩, it takes fi to a linear combination of f1, . . . , fn plus a
constant term; however, we chose fi(0) = 0, hence A acts on ⟨f1, . . . , fn⟩
linearly.

This gives a commutative diagram

M
dev−−−−→ Cn

A

y yA

M
dev−−−−→ Cn

This implies that dev(M) is an Z-invariant neighbourhood of 0 ∈ Cn, where
the action of Z = ⟨A0⟩ is generated by A0. Since

⋃
n A−n

0 (V ) = Cn for any
neighbourhood V of 0, any ⟨A0⟩-invariant neighbourhood of 0 ∈ Cn is equal
to Cn. Therefore, the development map is surjective, and, moreover, every
geodesics in M passing through 0 ∈ M can be extended indefinitely in both
directions. This implies that M is complete as a flat affine manifold. □

6.3. A new proof of Poincaré theorem about linearization of
non-resonant contractions

The Poincaré–Dulac theorem [2] gives a normal form of a smooth (or
analytic) contraction; its non-resonant case is sometimes called the Poincaré
theorem. It proves that a contraction (or a germ of a contraction), which is
non-resonant, becomes linear after an appropriate coordinate change. We
give a new proof of this theorem based on complex geometry. Note that
the assumption n ⩾ 3 below is unnecessary; we leave the case n = 2 for the
reader as an exercise.
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Theorem 6.6. — Let γ be an invertible holomorphic contraction of Cn

centered in 0, n ⩾ 3. Assume that the differential D0γ ∈ GL(T0Cn) is non-
resonant. Then there exists a holomorphic diffeomorphism U : Cn −→ Cn

such that UγU−1 is linear.(9)

Proof. — Let H := Cn\0/⟨γ⟩ be the Hopf manifold associated with γ,
and π : Cn\0 −→ H the universal covering map. By Proposition 4.5, the
tangent bundle TH is Mall. By Corollary 5.7, it is non-resonant. By The-
orem 5.16, TH admits a flat holomorphic connection ∇. Since Ω2H ⊗ TH

is a direct sum component of Ω1H ⊗ End(TH), and TH is non-resonant,

H0(H, Ω2H ⊗ TH) ⊂ H0(H, Ω1H ⊗ End(TH)) = 0,

(Corollary 5.7), hence ∇ is torsion-free.
By Theorem 6.5, the universal cover Cn\0 of H admits flat coordinates

such that γ is linear in these coordinates. This proves Theorem 6.6. □
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