A Mall bundle on a Hopf manifold is a holomorphic vector bundle whose pullback to is trivial. We define resonant and non-resonant Mall bundles, generalizing the notion of the resonance in ODE, and prove that a non-resonant Mall bundle always admits a flat holomorphic connection. We use this observation to prove a version of Poincaré–Dulac linearization theorem, showing that any non-resonant invertible holomorphic contraction of is linear in appropriate holomorphic coordinates. We define the notion of resonance in Hopf manifolds, and show that all non-resonant Hopf manifolds are linear; previously, this result was obtained by Kodaira using the Poincaré–Dulac theorem.
Un fibré de Mall sur une variété de Hopf est un fibré vectoriel holomorphe dont le tiré en arrière sur est trivial. Nous définissons des fibrés de Mall résonants et non-résonants en généralisant la notion de résonance dans les EDO et nous démontrons qu’un fibré de Mall non-résonant admet une connexion holomorphe plate. Nous employons cette observation pour démontrer une version du théorème de linéarisation de Poincaré–Dulac, en montrant que chaque contraction holomorphe bijective et non-résonante de est linéaire dans certaines coordonnées holomorphes adaptées. Nous définissons la notion de résonance pour les variétés de Hopf et nous montrons que chaque variété de Hopf non-résonante est linéaire : ce résultat avait été déjà obtenu par Kodaira au moyen du théorème de Poincaré–Dulac.
Revised:
Accepted:
Online First:
Keywords: Holomorphic contraction, Hopf manifold, holomorphic bundle, holomorphic connection, affine manifold, resonance, coherent sheaf, Dolbeault cohomology.
Mot clés : Contraction holomorphe, variété de Hopf, fibré holomorphe, connexion holomorphe, variété affine, résonance, faisceau cohérent, cohomologie de Dolbeault.
Ornea, Liviu 1, 2; Verbitsky, Misha 3, 4
@unpublished{AIF_0__0_0_A104_0, author = {Ornea, Liviu and Verbitsky, Misha}, title = {Mall bundles and flat connections}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3647}, language = {en}, note = {Online first}, }
Ornea, Liviu; Verbitsky, Misha. Mall bundles and flat connections. Annales de l'Institut Fourier, Online first, 28 p.
[1] Properly discontinuous groups of affine transformations: a survey, Geom. Dedicata, Volume 87 (2001) no. 1-3, pp. 309-333 | DOI | MR | Zbl
[2] Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften, 250, Springer, 1988, xiv+351 pages | DOI | MR | Zbl
[3] Complex analytic connections in fibre bundles, Trans. Am. Math. Soc., Volume 85 (1957), pp. 181-207 | DOI | MR | Zbl
[4] Holonomy of flat affinely connected manifolds, Ann. Math., Volume 62 (1955), pp. 139-151 | DOI | MR | Zbl
[5] Vector bundles with holomorphic connection over a projective manifold with tangent bundle of nonnegative degree, Proc. Am. Math. Soc., Volume 126 (1998) no. 10, pp. 2827-2834 | DOI | MR | Zbl
[6] Holomorphic affine connections on non-Kähler manifolds, Int. J. Math., Volume 27 (2016) no. 11, 1650094, 14 pages | DOI | MR | Zbl
[7] Holomorphic Riemannian metric and the fundamental group, Bull. Soc. Math. Fr., Volume 147 (2019) no. 3, pp. 455-468 | DOI | MR | Zbl
[8] Holomorphic connections and extension of complex vector bundles, Math. Nachr., Volume 204 (1999), pp. 29-39 | DOI | MR | Zbl
[9] Dolbeault cohomology of Hopf manifolds, https://mathoverflow.net/questions/25723/dolbeault-cohomology-of-hopf-manifolds
[10] Recherches sur les points singuliers des équations différentielles, J. de l’Éc. Pol., Volume 9 (1904) no. 2, pp. 5-125 | Zbl
[11] Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 56, Springer, 2011, xii+489 pages | DOI | MR | Zbl
[12] Foundations of modern analysis, Dover Publications, 2010
[13] The cohomology of vector bundles on general non-primary Hopf manifolds, Recent progress on some problems in several complex variables and partial differential equations (Contemporary Mathematics), Volume 400, American Mathematical Society, 2006, pp. 107-115 | DOI | MR | Zbl
[14] Geometric Structures on Manifolds, AMS Open Math. Notes, 2021 (https://www.ams.org/open-math-notes/omn-view-listing?listingId=111282)
[15] Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, 1978, xii+813 pages | MR | Zbl
[16] Sur quelques points d’algèbre homologique, Tôhoku Math. J., Volume 9 (1957), pp. 119-221 (English translation: http://www.math.mcgill.ca/barr/papers/gk.pdf) | DOI | MR | Zbl
[17] Analytic functions of several complex variables, AMS Chelsea Publishing, 2009, xiv+318 pages | DOI | MR | Zbl
[18] Deformations of transversely holomorphic flows on spheres and deformations of Hopf manifolds, Compos. Math., Volume 55 (1985) no. 2, pp. 241-251 | Numdam | MR | Zbl
[19] On the geometry of Hopf manifolds, Osaka J. Math., Volume 12 (1960), pp. 387-402 | MR | Zbl
[20] Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, 1987, xii+305 pages (Kanô Memorial Lectures, 5) | DOI | MR | Zbl
[21] On the structure of compact complex analytic surfaces. II, Am. J. Math., Volume 88 (1966), pp. 682-721 | DOI | MR | Zbl
[22] On the structure of compact complex analytic surfaces. III, Am. J. Math., Volume 90 (1968), pp. 55-83 | DOI | MR
[23] Sur certaines structures fibrées complexes, Arch. Math., Volume 9 (1958), pp. 102-109 | DOI | MR | Zbl
[24] Sur les formes réduites des transformations ponctuelles dans le domaine d’un point double, Bull. Soc. Math. Fr., Volume 39 (1911), pp. 309-345 | DOI | Numdam | MR | Zbl
[25] Cohomology of bundles on homological Hopf manifolds, Sci. China, Ser. A, Volume 52 (2009) no. 12, pp. 2688-2698 | DOI | MR | Zbl
[26] Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer, 1971, ix+262 pages | MR | Zbl
[27] The cohomology of line bundles on Hopf manifolds, Osaka J. Math., Volume 28 (1991) no. 4, pp. 999-1015 | MR | Zbl
[28] Contractions, Fredholm operators and the cohomology of vector bundles on Hopf manifolds, Arch. Math., Volume 66 (1996) no. 1, pp. 71-76 | DOI | MR | Zbl
[29] Vector bundles on complex projective spaces, Modern Birkhäuser Classics, Birkhäuser/Springer, 2011, viii+239 pages (corrected reprint of the 1988 edition, with an appendix by S. I. Gelfand) | DOI | MR | Zbl
[30] Embedding of LCK manifolds with potential into Hopf manifolds using Riesz–Schauder theorem, Complex and symplectic geometry (Springer INdAM Series), Volume 21, Springer, 2017, pp. 137-148 | DOI | MR | Zbl
[31] Non-linear Hopf manifolds are locally conformally Kähler, J. Geom. Anal., Volume 33 (2023) no. 7, 201, 10 pages | DOI | MR | Zbl
[32] Poincaré-Dulac theorem, Encyclopedia of Mathematics (https://encyclopediaofmath.org/wiki/Poincare-Dulac_theorem)
[33] Dolbeault cohomology of compact complex homogeneous manifolds, Proc. Indian Acad. Sci., Math. Sci., Volume 109 (1999) no. 1, pp. 11-21 | DOI | MR | Zbl
[34] The geometry of Hessian structures, World Scientific, 2007, xiv+246 pages | DOI | MR | Zbl
[35] Extension of locally free analytic sheaves, Math. Ann., Volume 179 (1969), pp. 285-294 | DOI | MR | Zbl
[36] Local contractions and a theorem of Poincaré, Am. J. Math., Volume 79 (1957), pp. 809-824 | DOI | Zbl
[37] Normal families of holomorphic mappings, Acta Math., Volume 119 (1967), pp. 193-233 | DOI | MR | Zbl
Cited by Sources: