We generalize an inequality of Besson–Courtois–Gallot about volume and simplicial volume of closed manifolds to the -norm of all the homology classes of complete manifolds. The inequality involves the critical exponent of the fundamental group of the manifold and the mass of the homology classes.
Nous généralisons une inégalité de Besson–Courtois–Gallot entre le volume et le volume simplicial des variétés fermées à la norme de toutes les classes d’homologie des variétés complètes. L’inégalité s’exprime en termes de l’exposant critique du groupe fondamental de la variété et de la masse des classes d’homologie.
Revised:
Accepted:
Online First:
Published online:
Keywords: Gromov norm, critical exponent, mass, comass, complete manifold.
Mot clés : norme de Gromov, exposant critique, masse, comasse, variété complète.
@article{AIF_2024__74_3_1297_0, author = {Campagnolo, Caterina and Wang, Shi}, title = {An $\ell _1$-norm-mass inequality for complete manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1297--1318}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {3}, year = {2024}, doi = {10.5802/aif.3643}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3643/} }
TY - JOUR AU - Campagnolo, Caterina AU - Wang, Shi TI - An $\ell _1$-norm-mass inequality for complete manifolds JO - Annales de l'Institut Fourier PY - 2024 SP - 1297 EP - 1318 VL - 74 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3643/ DO - 10.5802/aif.3643 LA - en ID - AIF_2024__74_3_1297_0 ER -
%0 Journal Article %A Campagnolo, Caterina %A Wang, Shi %T An $\ell _1$-norm-mass inequality for complete manifolds %J Annales de l'Institut Fourier %D 2024 %P 1297-1318 %V 74 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3643/ %R 10.5802/aif.3643 %G en %F AIF_2024__74_3_1297_0
Campagnolo, Caterina; Wang, Shi. An $\ell _1$-norm-mass inequality for complete manifolds. Annales de l'Institut Fourier, Volume 74 (2024) no. 3, pp. 1297-1318. doi : 10.5802/aif.3643. https://aif.centre-mersenne.org/articles/10.5802/aif.3643/
[1] Lectures on hyperbolic geometry, Springer, 2012 | Zbl
[2] Volume et entropie minimale des espaces localement symétriques, Invent. Math., Volume 103 (1991) no. 2, pp. 417-445 | DOI | MR | Zbl
[3] Simplicial volume of products and fiber bundles, Discrete groups and geometric structures (Contemporary Mathematics), Volume 501, American Mathematical Society, 2009, pp. 79-86 | DOI | MR | Zbl
[4] The norm of the Euler class, Math. Ann., Volume 353 (2012) no. 2, pp. 523-544 | DOI | MR | Zbl
[5] The simplicial volume of closed manifolds covered by , J. Topol., Volume 1 (2008) no. 3, pp. 584-602 | DOI | MR | Zbl
[6] Surface group representations with maximal Toledo invariant, Ann. Math., Volume 172 (2010) no. 1, pp. 517-566 | DOI | MR | Zbl
[7] Positivity of simplicial volume for nonpositively curved manifolds with a Ricci-type curvature condition, Groups Geom. Dyn., Volume 13 (2019) no. 3, pp. 1007-1034 | DOI | MR | Zbl
[8] Functorial seminorms on singular homology and (in)flexible manifolds, Algebr. Geom. Topol., Volume 15 (2015) no. 3, pp. 1453-1499 | DOI | MR | Zbl
[9] Bounded cohomology of discrete groups, Mathematical Surveys and Monographs, 227, American Mathematical Society, 2017, xvi+193 pages | DOI | MR | Zbl
[10] Gromov’s theory of multicomplexes with applications to bounded cohomology and simplicial volume, Mem. Am. Math. Soc., Volume 283 (2023) no. 1402, p. vi+153 | DOI | MR | Zbl
[11] Volume and bounded cohomology, Publ. Math., Inst. Hautes Étud. Sci. (1982) no. 56, p. 5-99 (1983) | Numdam | MR | Zbl
[12] Simplices of maximal volume in hyperbolic -space, Acta Math., Volume 147 (1981) no. 1-2, pp. 1-11 | DOI | MR | Zbl
[13] The Gromov invariant of negatively curved manifolds, Topology, Volume 21 (1982) no. 1, pp. 83-89 | DOI | MR | Zbl
[14] Cohomology in Banach algebras, Memoirs of the American Mathematical Society, 127, American Mathematical Society, 1972, iii+96 pages | DOI | MR | Zbl
[15] Homological dimension and critical exponent of Kleinian groups, Geom. Funct. Anal., Volume 18 (2009) no. 6, pp. 2017-2054 | DOI | MR | Zbl
[16] Simplicial volume of closed locally symmetric spaces of non-compact type, Acta Math., Volume 197 (2006) no. 1, pp. 129-143 | DOI | MR | Zbl
[17] Barycentric straightening and bounded cohomology, J. Eur. Math. Soc., Volume 21 (2019) no. 2, pp. 381-403 | DOI | MR | Zbl
[18] Simplicial volume of Hilbert modular varieties, Comment. Math. Helv., Volume 84 (2009) no. 3, pp. 457-470 | DOI | MR | Zbl
[19] Bounded cohomology characterizes hyperbolic groups, Q. J. Math., Volume 53 (2002) no. 1, pp. 59-73 | DOI | MR | Zbl
[20] Characteristic classes of surface bundles and bounded cohomology, A fête of topology, Academic Press Inc., 1988, pp. 233-257 | DOI | MR | Zbl
[21] Simplices of maximal volume in hyperbolic space, Gromov’s norm, and Gromov’s proof of Mostow’s rigidity theorem (following Thurston), Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979) (Lecture Notes in Mathematics), Volume 788, Springer (1980), pp. 109-124 | DOI | MR | Zbl
[22] Riemannian geometry, Graduate Texts in Mathematics, 171, Springer, 2016, xviii+499 pages | DOI | MR | Zbl
[23] New bounds for the simplicial volume of complex hyperbolic surfaces (2018) (https://arxiv.org/abs/1812.11541)
[24] The geometry and topology of three-manifolds, Princeton University, 1979
[25] On splitting rank of non-compact-type symmetric spaces and bounded cohomology, J. Topol. Anal., Volume 12 (2020) no. 2, pp. 465-489 | DOI | MR | Zbl
Cited by Sources: