Let be a Schrödinger operator with a non-negative potential on a complete Riemannian manifold . We prove that the vertical Littlewood-Paley-Stein functional associated with is bounded on if and only if the set is -bounded on . We also introduce and study more general functionals. For a sequence of functions , we define
We prove boundedness of on in the sense
for some constant independent of . A lower estimate is also proved on the dual space . We introduce and study boundedness of other Littlewood-Paley-Stein type functionals and discuss their relationships to the Riesz transform. Several examples are given in the paper.
Soit un opérateur de Schrödinger avec un potentiel positif sur une variété Riemannianne complète . Nous montrons que les fonctionnelles verticales de Littlewood–Paley–Stein associées à sont bornées sur si et seulement si l’ensemble est -borné sur . Nous introduisons et étudions d’autres fonctionnelles plus générales. Pour une suite de fonctions données, on définit
Nous montrons que est bornée sur au sens
avec une constante indépendante de . Une estimation inférieure est aussi démontrée sur l’espace dual . Nous discuterons le lien entre ces fonctionnelles et la transformée de Riesz. Plusieurs exemples et contre-exemples sont donnés dans le papier.
Revised:
Accepted:
Online First:
Published online:
Keywords: Littlewood–Paley–Stein functionals, Riesz transforms, Kahane–Khintchine inequality, spectral multipliers, Schrödinger operators, elliptic operators.
Mot clés : Fonctionnelles de Littlewood–Paley–Stein, transformée de Riesz, inégalités de Kahane–Khintchine, multiplicateurs spectraux, opérateurs de Schrödinger, opérateurs elliptiques.
Cometx, Thomas 1; Ouhabaz, El Maati 2
@article{AIF_2024__74_3_1251_0, author = {Cometx, Thomas and Ouhabaz, El Maati}, title = {Littlewood{\textendash}Paley{\textendash}Stein functionals: an ${\mathcal{R}}$-boundedness approach}, journal = {Annales de l'Institut Fourier}, pages = {1251--1296}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {3}, year = {2024}, doi = {10.5802/aif.3634}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3634/} }
TY - JOUR AU - Cometx, Thomas AU - Ouhabaz, El Maati TI - Littlewood–Paley–Stein functionals: an ${\mathcal{R}}$-boundedness approach JO - Annales de l'Institut Fourier PY - 2024 SP - 1251 EP - 1296 VL - 74 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3634/ DO - 10.5802/aif.3634 LA - en ID - AIF_2024__74_3_1251_0 ER -
%0 Journal Article %A Cometx, Thomas %A Ouhabaz, El Maati %T Littlewood–Paley–Stein functionals: an ${\mathcal{R}}$-boundedness approach %J Annales de l'Institut Fourier %D 2024 %P 1251-1296 %V 74 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3634/ %R 10.5802/aif.3634 %G en %F AIF_2024__74_3_1251_0
Cometx, Thomas; Ouhabaz, El Maati. Littlewood–Paley–Stein functionals: an ${\mathcal{R}}$-boundedness approach. Annales de l'Institut Fourier, Volume 74 (2024) no. 3, pp. 1251-1296. doi : 10.5802/aif.3634. https://aif.centre-mersenne.org/articles/10.5802/aif.3634/
[1] Riesz transforms of Schrödinger operators on manifolds, J. Geom. Anal., Volume 22 (2012) no. 4, pp. 1108-1136 | DOI | MR | Zbl
[2] Maximal inequalities and Riesz transform estimates on spaces for Schrödinger operators with nonnegative potentials, Ann. Inst. Fourier, Volume 57 (2007) no. 6, pp. 1975-2013 | DOI | Numdam | MR | Zbl
[3] Riesz transform on manifolds and heat kernel regularity, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 6, pp. 911-957 | DOI | Numdam | MR | Zbl
[4] Vertical versus conical square functions, Trans. Am. Math. Soc., Volume 364 (2012) no. 10, pp. 5469-5489 | DOI | MR | Zbl
[5] Square root problem for divergence operators and related topics, Astérisque, Société Mathématique de France, 1998 no. 249, viii+172 pages | Numdam | MR | Zbl
[6] étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Séminaire de Probabilités, XXI (Lecture Notes in Mathematics), Volume 1247, Springer, 1987, pp. 137-172 | DOI | Numdam | MR | Zbl
[7] Riesz transforms through reverse Hölder and Poincaré inequalities, Math. Z., Volume 284 (2016) no. 3-4, pp. 791-826 | DOI | MR | Zbl
[8] Functional calculus for generators of symmetric contraction semigroups, Duke Math. J., Volume 166 (2017) no. 5, pp. 937-974 | DOI | MR | Zbl
[9] Riesz transform and -cohomology for manifolds with Euclidean ends, Duke Math. J., Volume 133 (2006) no. 1, pp. 59-93 | DOI | MR | Zbl
[10] Heat kernels on positively curved manifolds and applications., Ph. D. Thesis, Hangzhu Univ. (1987)
[11] Quasi transformées de Riesz, espaces de Hardy et estimations sous-gaussiennes du noyau de la chaleur, Thèse de doctorat Mathématiques, Université Paris 11 (2014) (http://www.theses.fr/2014PA112068)
[12] The Hodge–de Rham Laplacian and -boundedness of Riesz transforms on non-compact manifolds, Nonlinear Anal., Theory Methods Appl., Volume 125 (2015), pp. 78-98 | DOI | MR | Zbl
[13] Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner-Riesz means, J. Anal. Math., Volume 129 (2016), pp. 219-283 | DOI | MR | Zbl
[14] Schauder decomposition and multiplier theorems, Stud. Math., Volume 138 (2000) no. 2, pp. 135-163 | MR | Zbl
[15] Riesz transforms for , Trans. Am. Math. Soc., Volume 351 (1999) no. 3, pp. 1151-1169 | DOI | MR | Zbl
[16] Riesz transform and related inequalities on noncompact Riemannian manifolds, Commun. Pure Appl. Math., Volume 56 (2003) no. 12, pp. 1728-1751 | DOI | MR | Zbl
[17] Littlewood-Paley-Stein functions on complete Riemannian manifolds for , Stud. Math., Volume 154 (2003) no. 1, pp. 37-57 | DOI | MR | Zbl
[18] Gradient estimates for heat kernels and harmonic functions, J. Funct. Anal., Volume 278 (2020) no. 8, 108398, 67 pages | DOI | MR | Zbl
[19] Banach space operators with a bounded functional calculus, J. Aust. Math. Soc., Ser. A, Volume 60 (1996) no. 1, pp. 51-89 | DOI | MR | Zbl
[20] Maximal Hörmander functional calculus on spaces and UMD lattices, Int. Math. Res. Not. (2023) no. 6, pp. 4643-4694 | DOI | MR | Zbl
[21] Heat kernel and Riesz transform of Schrödinger operators, Ann. Inst. Fourier, Volume 69 (2019) no. 2, pp. 457-513 | DOI | Numdam | MR | Zbl
[22] Heat equation derivative formulas for vector bundles, J. Funct. Anal., Volume 183 (2001) no. 1, pp. 42-108 | DOI | MR | Zbl
[23] Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal., Volume 196 (2002) no. 2, pp. 443-485 | DOI | MR | Zbl
[24] Endpoint estimates for Riesz transforms of magnetic Schrödinger operators, Ark. Mat., Volume 44 (2006) no. 2, pp. 261-275 | DOI | MR | Zbl
[25] Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II, Ann. Inst. Fourier, Volume 59 (2009) no. 4, pp. 1553-1610 | DOI | Numdam | MR | Zbl
[26] Analysis in Banach spaces. Vol. II. Probabilistic methods and operator theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 67, Springer, 2017, xxi+616 pages | DOI | MR | Zbl
[27] Square function and heat flow estimates on domains, Commun. Partial Differ. Equations, Volume 42 (2017) no. 9, pp. 1447-1466 | DOI | MR | Zbl
[28] The -calculus and sums of closed operators, Math. Ann., Volume 321 (2001) no. 2, pp. 319-345 | DOI | MR | Zbl
[29] Fractional powers of operators, Pac. J. Math., Volume 19 (1966), pp. 285-346 | DOI | MR | Zbl
[30] On square functions associated to sectorial operators, Bull. Soc. Math. Fr., Volume 132 (2004) no. 1, pp. 137-156 | DOI | Numdam | MR | Zbl
[31] Estimation des fonctions de Littlewood-Paley-Stein sur les variétés riemanniennes à courbure non positive, Ann. Sci. Éc. Norm. Supér., Volume 20 (1987) no. 4, pp. 505-544 | DOI | Numdam | MR | Zbl
[32] Analysis of heat equations on domains, London Mathematical Society Monographs, 31, Princeton University Press, 2005, xiv+284 pages | MR | Zbl
[33] Littlewood–Paley–Stein functions for Schrödinger operators, Front. Sci. Eng., Volume 6 (2016) no. 1, pp. 99-109 (See also https://arxiv.org/abs/1705.06794)
[34] estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier, Volume 45 (1995) no. 2, pp. 513-546 | DOI | Numdam | MR | Zbl
[35] Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, 1970, xiv+290 pages | MR | Zbl
[36] Topics in harmonic analysis related to the Littlewood–Paley theory, Annals of Mathematics Studies, 63, Princeton University Press; University of Tokyo Press, 1970, viii+146 pages | DOI | MR | Zbl
[37] A new approach to maximal -regularity, Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998) (Lecture Notes in Pure and Applied Mathematics), Volume 215, Marcel Dekker, 2001, pp. 195-214 | MR | Zbl
Cited by Sources: